Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337225

ABSTRACT

Polymer materials are increasingly widely used in high-fire-risk applications, such as aviation interior components. This study aimed to compare the tensile, thermal, and flame-retardant properties of test samples made from ultra-performance materials, polyetherimide (PEI) and polyetherketoneketone (PEKK), using the fused filament fabrication process (FFF). The tensile tests were performed for these materials at different raster angles (0, 45, and 90°). The thermomechanical tests were done in the axial, perpendicular, and through-thickness directions to the extruded filaments. The impact of printing parameters on the flame retardancy of 3D-printed samples was investigated in vertical burn tests with varying specimen thicknesses and printing directions. Experimentally, it was testified that PEKK had better isotropic behaviour than PEI for mechanical performance, thermal expansion, and fire-resistant properties, which are essential in fabricating intricately shaped products.

2.
Polymers (Basel) ; 15(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514378

ABSTRACT

During this study, the resistivity of electrically conductive structures 3D-printed via fused filament fabrication (FFF) was investigated. Electrical resistivity characterisation was performed on various structural levels of the whole 3D-printed body, starting from the single traxel (3D-printed single track element), continuing with monolayer and multilayer formation, finalising with hybrid structures of a basic nonconductive polymer and an electrically conductive one. Two commercial conductive materials were studied: Proto-Pasta and Koltron G1. It was determined that the geometry and resistivity of a single traxel influenced the resistivity of all subsequent structural elements of the printed body and affected its electrical anisotropy. In addition, the results showed that thermal postprocessing (annealing) affected the resistivity of a standalone extruded fibre (extruded filament through a printer nozzle in freefall) and traxel. The effect of Joule heating and piezoresistive properties of hybrid structures with imprinted conductive elements made from Koltron G1 were investigated. Results revealed good thermal stability within 70 °C and considerable piezoresistive response with a gauge factor of 15-25 at both low 0.1% and medium 1.5% elongations, indicating the potential of such structures for use as a heat element and strain gauge sensor in applications involving stiff materials and low elongations.

3.
Materials (Basel) ; 14(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34361335

ABSTRACT

This article deals with the theoretical issues of the formation of a melt pool during the process of direct laser deposition. The shape and size of the pool depends on many parameters, such as the speed and power of the process, the optical and physical properties of the material, and the powder consumption. On the other hand, the influence of the physical processes occurring in the material on one another is significant: for instance, the heating of the powder and the substrate by laser radiation, or the formation of the free surface of the melt, taking into account the Marangoni effect. This paper proposes a model for determining the size of the melt bath, developed in a one-dimensional approximation of the boundary layer flow. The dimensions and profile of the surface and bottom of the melt pool are obtained by solving the problem of convective heat transfer. The influence of the residual temperature from the previous track, as well as the heat from the heated powder of the gas-powder jet, taking into account its spatial distribution, is considered. The simulation of the size and shape of the melt pool, as well as its free surface profile for different alloys, is performed with 316 L steel, Inconel 718 nickel alloy, and VT6 titanium alloy.

4.
Materials (Basel) ; 14(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443007

ABSTRACT

The electrical conductivity of glass fiber-reinforced plastic (GFRP) with epoxy matrix modified by multiwall carbon nanotubes (MWCNT) was studied. The electrical conductivity of nanomodified lamina and multi-layered GFRP was investigated on several levels using a structural approach. Components of the electrical conductivity tensor for unidirectional-reinforced monolayer were calculated similarly as in micromechanics using the conductivity of the nanomodified matrix. The electrical conductivity of multilayer composite was calculated using laminate theory and compared with values measured experimentally for various fiber orientation angles. Calculated and experimental data were in good agreement. The voltage distribution measured throughout the laminate allowed detecting the damage in its volume. The electrode network located on the laminate surface could determine the location, quantification, and geometry of the damage in the GFRP lamina modified with MWCNT. Experimental and calculated electrical resistance data for GFRP double-cantilever beam specimens were investigated in Mode I interlaminar fracture toughness test. Results demonstrate that electrical resistance could be successfully used for the diagnostic of the crack propagation during interlaminar fracture of the MWCNT-modified GFRP.

SELECTION OF CITATIONS
SEARCH DETAIL
...