Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 14(12): 2723-35, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25363083

ABSTRACT

Primary T cell activation and effector cell differentiation is required for rejection of allogeneic grafts in naïve recipients. It has become evident, that mitochondria play an important role for T cell activation. Expression of several mitochondrial proteins such as TCAIM (T cell activation inhibitor, mitochondrial) is down-regulated upon T cell receptor triggering. Here we report that TCAIM inhibited spontaneous development of memory and effector T cells. CD4(+) T cells from Tcaim knock-in (KI) mice showed reduced activation, cytokine secretion and proliferation in vitro. Tcaim KI T cells tolerated allogeneic skin grafts upon transfer into Rag-1 KO mice. CD4(+) and CD8(+) T cells from these mice did not infiltrate skin grafts and kept a naïve or central memory phenotype, respectively. They were unable to acquire effector phenotype and functions. TCAIM altered T cell activation-induced mitochondrial distribution and reduced mitochondrial reactive oxygen species (mROS) production. Thus, TCAIM controls T cell activation and promotes tolerance induction probably by regulating TCR-mediated mitochondrial distribution and mROS production.


Subject(s)
Lymphocyte Activation/immunology , Mitochondria/immunology , Mitochondrial Proteins/physiology , Skin Transplantation , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes/immunology , Transplantation Tolerance/immunology , Animals , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Flow Cytometry , Homeodomain Proteins/physiology , Immunologic Memory/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , T-Lymphocytes/metabolism , Transplantation, Homologous
2.
Am J Transplant ; 12(9): 2384-94, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22702307

ABSTRACT

Recent data suggest that donor-specific memory T cells (T(mem)) are an independent risk factor for rejection and poor graft function in patients and a major challenge for immunosuppression minimizing strategies. Many tolerance induction protocols successfully proven in small animal models e.g. costimulatory blockade, T cell depletion failed in patients. Consequently, there is a need for more predictive transplant models to evaluate novel promising strategies, such as adoptive transfer of regulatory T cells (Treg). We established a clinically more relevant, life-supporting rat kidney transplant model using a high responder (DA to LEW) recipients that received donor-specific CD4(+)/ 8(+) GFP(+) T(mem) before transplantation to achieve similar pre-transplant frequencies of donor-specific T(mem) as seen in many patients. T cell depletion alone induced long-term graft survival in naïve recipients but could not prevent acute rejection in T(mem)(+) rats, like in patients. Only if T cell depletion was combined with permanent CNI-treatment, the intragraft inflammation, and acute/chronic allograft rejection could be controlled long-term. Remarkably, combining 10 days CNI treatment and adoptive transfer of Tregs (day 3) but not Treg alone also induced long-term graft survival and an intragraft tolerance profile (e.g. high TOAG-1) in T(mem)(+) rats. Our model allows evaluation of novel therapies under clinically relevant conditions.


Subject(s)
Calcineurin Inhibitors , Graft Rejection , Immunosuppressive Agents/pharmacology , Kidney Transplantation , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Flow Cytometry , Immunologic Memory , Lymphocyte Depletion , Rats , Rats, Inbred Lew , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...