Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 11: 700198, 2021.
Article in English | MEDLINE | ID: mdl-34485178

ABSTRACT

Efflux pumps are one of the predominant microbial resistant mechanisms leading to the development of multidrug resistance. In Staphylococcus aureus, overexpression of NorA protein enables the efflux of antibiotics belonging to the class of fluoroquinolones and, thus, makes S. aureus resistant. Hence, NorA efflux pumps are being extensively exploited as the potential drug target to evade bacterial resistance and resensitize bacteria to the existing antibiotics. Although several molecules are reported to inhibit NorA efflux pump effectively, boronic acid derivatives were shown to have promising NorA efflux pump inhibition. In this regard, the current study exploits 6-(3-phenylpropoxy)pyridine-3-boronic acid to further improve the activity and reduce cytotoxicity using the bioisostere approach, a classical medicinal chemistry concept. Using the SWISS-Bioisostere online tool, from the parent compound, 42 compounds were obtained upon the replacement of the boronic acid. The 42 compounds were docked with modeled NorA protein, and key molecular interactions of the prominent compounds were assessed. The top hit compounds were further analyzed for their drug-like properties using ADMET studies. The identified potent lead, 5-nitro-2-(3-phenylpropoxy)pyridine (5-NPPP), was synthesized, and in vitro efficacy studies have been proven to show enhanced efflux inhibition, thus acting as a potent antibiotic breaker to resensitize S. aureus without elucidating any cytotoxic effect to the host Hep-G2 cell lines.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Computer Simulation , Drug Resistance, Microbial , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins , Staphylococcus aureus/metabolism
2.
J Genet ; 96(6): 919-926, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29321350

ABSTRACT

In view of well-documented association of hyperhomocysteinaemia with a wide spectrum of diseases and higher incidence of vitamin deficiencies in Indians, we proposed a mathematical model to forecast the role of demographic and genetic variables in influencing homocysteinemetabolism and investigated the influence of life style modulations in controlling homocysteine levels. Total plasma homocysteine levels were measured in fasting samples using reverse phase HPLC. Multiple linear regression (MLR) and neuro-fuzzy models were developed. The MLR model explained 64% variability in homocysteine, while the neurofuzzy model showed higher accuracy in predicting homocysteine with a mean absolute error of 0.00002 µmol/L. Methylene tetrahydrofolate reductase (MTHFR) C677T, 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) A2756G and 5- methyltetrahydrofolate homocysteine methyltransferase reductase (MTRR) A66G were shown to be positively associatiated with homocysteine, while nonvegetarian diet, serine hydroxymethyltransferase 1 (SHMT1) C1420T and TYMS 5'-UTR 28 bp tandem repeat exhibited negative association with homocysteine. The protective role of SHMT1 C1420T was attributed to more H-bonding interactions in the mutant modelled compared to the wild type, as shown through in silico analysis. To conclude, polymorphisms in genes regulating remethylation of homocysteine strongly influence homocysteine levels. The restoration of one-carbon homeostasis by SHMT1 C1420T or increased flux of folate towards remethylation due to TYMS 5'-UTR 28 bp tandem repeat or nonvegetarian diet can lower homocysteine levels.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Ferredoxin-NADP Reductase/genetics , Hyperhomocysteinemia/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Alleles , Asian People , Chromatography, High Pressure Liquid , Female , Genetic Predisposition to Disease , Genotype , Homocysteine/blood , Humans , Hyperhomocysteinemia/blood , Hyperhomocysteinemia/pathology , Linear Models , Male , Models, Theoretical , Polymorphism, Single Nucleotide , Thymidylate Synthase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...