Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37374872

ABSTRACT

Biologically enhanced transport of radionuclides is one of several processes that can affect the performance of a nuclear waste repository. In this work, several microbial isolates from the Waste Isolation Pilot Plant (WIPP) were tested for their influence on the concentration of neodymium, as an analog for +3 actinides, in simple sodium chloride solutions and in anoxic WIPP brines. Batch sorption experiments were carried out over a period of 4-5 weeks. In many cases, the effect on neodymium in solution was immediate and extensive and assumed to be due to surface complexation. However, over time, the continued loss of Nd from the solution was more likely due to biologically induced precipitation and/or mineralization and possible entrapment in extracellular polymeric substances. The results showed no correlation between organism type and the extent of its influence on neodymium in solution. However, a correlation was observed between different test matrices (simple NaCl versus high-magnesium brine versus high-NaCl brine). Further experiments were conducted to test these matrix effects, and the results showed a significant effect of magnesium concentration on the ability of microorganisms to remove Nd from solution. Possible mechanisms include cation competition and the alteration of cell surface structures. This suggests that the aqueous chemistry of the WIPP environs could play a larger role in the final disposition of +3 actinides than the microbiology.

2.
Chemosphere ; 280: 130680, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34162079

ABSTRACT

Spores of a Bacillus sp., isolated from radioactive waste, were tested for their ability to influence the fate and transport of neodymium (Nd3+) under high salt conditions expected at the Waste Isolation Pilot Plant (WIPP) nuclear waste repository. Spores were suspended in neodymium-spiked saline solutions up to 4 M NaCl, and concentrations of Nd and the complexing agent dipicolinic acid (DPA), a component of spores, were monitored along with optical densities and spore numbers. Results support neodymium bioassociation that is dependent upon biomass, with more apparent adsorption occurring at higher spore concentrations. However, probable spore lysis in 2 and 4 M NaCl solutions and possible germination at 0.15 M NaCl appear to drive the release of DPA and subsequent return of Nd to solution. The implications of this work for the WIPP will depend on actual biomass levels and the ionic strength of the repository brines.


Subject(s)
Bacillus , Bacillus subtilis , Biomass , Picolinic Acids , Radioisotopes , Sodium Chloride , Spores, Bacterial
3.
Chemosphere ; 274: 129741, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33545584

ABSTRACT

Spectrophotometry was used to study the effect of EDTA on plutonium oxidation state distribution as a function of time, pH, and ligand-to-metal ratio (L/M) under anoxic conditions. Novel Pu(V)-EDTA absorption bands were identified at 571, 993, 1105, and 1150 nm with molar absorption coefficients of 15 ± 1, 6 ± 1, 10 ± 1, and 10 ± 1 cm-1M-1, respectively. Pu(V)-EDTA spectral changes occurred at L/M < 1, indicating only PuVO2(EDTA)3- formed with logK = 3.6 ± 0.3. Time-resolved experiments showed EDTA drastically increased the Pu(V/VI) reduction rate, which we propose is driven by amine lone-pair electron donation and the oxidative decarboxylation of EDTA. Oxidation of Pu(III)-EDTA to Pu(IV)-EDTA occurred on a slower time scale (110-237 days) than previously reported (<15 min) and is hypothesized to be radiolysis driven. Pu(V/VI)-EDTA and Pu(III)-EDTA both approached Pu(IV)-EDTA stabilization over time, yet Pu(V/VI)-EDTA solubility data was ≥ 1.0 log10 units higher than predicted by Pu(IV)-EDTA solubility models, indicating that current thermodynamic models are incomplete. Ultimately, the data show EDTA preferentially stabilizes Pu(IV) over time regardless of initial oxidation state, but Pu(V)-EDTA can persist under environmentally-relevant conditions, emphasizing the need to continue investigating redox reactions, speciation, and behavior of these complexes to support the transuranic waste disposal and surface remediation/containment efforts.


Subject(s)
Plutonium , Water Pollutants, Radioactive , Edetic Acid , Oxidation-Reduction , Plutonium/analysis , Solubility , Water Pollutants, Radioactive/analysis
4.
Anal Chem ; 91(18): 11643-11652, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31418542

ABSTRACT

An intercomparison of the radio-chronometric ages of four distinct plutonium-certified reference materials varying in chemical form, isotopic composition, and period of production are presented. The cross-comparison of the different 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages obtained at four independent analytical facilities covering a range of laboratory environments from bulk sample processing to clean facilities dedicated to nuclear forensic investigation of environmental samples enables a true assessment of the state-of-practice in "age dating capabilities" for nuclear materials. The analytical techniques evaluated used modern mass spectrometer instrumentation including thermal ionization mass spectrometers and inductively coupled plasma mass spectrometers for isotopic abundance measurements. Both multicollector and single collector instruments were utilized to generate the data presented here. Consensus values established in this study make it possible to use these isotopic standards as quality control standards for radio-chronometry applications. Results highlight the need for plutonium isotopic standards that are certified for 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages as well as other multigenerational radio-chronometers such as 237Np/241Pu. Due to the capabilities of modern analytical instrumentation, analytical laboratories that focus on trace level analyses can obtain model ages with marginally larger uncertainties than laboratories that handle bulk samples. When isotope ratio measurement techniques like thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry with comparable precision are utilized, model purification ages with similar uncertainties are obtained.

5.
Forensic Sci Int ; 273: e1-e9, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28189344

ABSTRACT

Nuclear forensics techniques, including micro-XRF, gamma spectrometry, trace elemental analysis and isotopic/chronometric characterization were used to interrogate two, potentially related plutonium metal foils. These samples were submitted for analysis with only limited production information, and a comprehensive suite of forensic analyses were performed. Resulting analytical data was paired with available reactor model and historical information to provide insight into the materials' properties, origins, and likely intended uses. Both were super-grade plutonium, containing less than 3% 240Pu, and age-dating suggested that most recent chemical purification occurred in 1948 and 1955 for the respective metals. Additional consideration of reactor modeling feedback and trace elemental observables indicate plausible U.S. reactor origin associated with the Hanford site production efforts. Based on this investigation, the most likely intended use for these plutonium foils was 239Pu fission foil targets for physics experiments, such as cross-section measurements, etc.

6.
Talanta ; 159: 200-207, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27474299

ABSTRACT

Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for this Np oxide.

7.
Inorg Chem ; 55(4): 1516-26, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26836266

ABSTRACT

A protocol is presented for the synthesis of chromium(III) complexes of the type cis-[Cr(diimine)2(1-methylimidazole)2](3+). These compounds exhibit large excited-state oxidizing powers and strong luminescence in solution. Emission is quenched by added guanine, yielding rate constants that track the driving force for guanine oxidation. The cis-[Cr(TMP)(DPPZ)(1-MeImid)2](3+) species binds strongly to duplex DNA with a preference for AT base sites in the minor groove and may serve as a precursor for photoactivated DNA covalent adduct formation.


Subject(s)
Imidazoles/chemical synthesis , Nucleotides/chemistry , Binding Sites , Imidazoles/chemistry , Oxidation-Reduction , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
8.
Chirality ; 23(1): 84-92, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21125690

ABSTRACT

Antimalarial drugs have shown potential in suppressing the role of glycosaminoglycans (GAGs) in the pathology of prion protein conformational disorders (e.g. "Mad Cow" disease) by competing for sites of electrostatic interaction. In this study, circular dichroism (CD) and UV/Visible (UV/Vis) absorption spectroscopy techniques were used to investigate the interactions between N-methyl-N'-(7-chloro-4-quinolyl)-1,3-diaminopropane (QD), an achiral, bicyclic compound similar to previously investigated antimalarial drugs, and heparin, a complex GAG that is frequently used as a clinical anticoagulant. Relatively intense heparin-induced CD features were observed for QD and were noted to be radically different from previous studies using related chiral drugs, underscoring the importance of the Pfieffer effect on this and similar heparin research. Additionally, the induced CD for QD was observed to be highly dependent upon drug concentration, heparin concentration, system pH, equilibration time, and ionic strength. These results, in connection with recent work, provide new insight into the nature of the association between GAGs and antimalarial species.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Heparin/pharmacology , Antimalarials/chemistry , Chloroquine/analogs & derivatives , Chloroquine/chemistry , Circular Dichroism , Hydrogen-Ion Concentration , Mass Spectrometry , Osmolar Concentration , Solutions , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...