Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(36): 19715-19726, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37642952

ABSTRACT

[HCo(CO)x(bisphosphine)](BF4), x = 1-3, is a highly active hydroformylation catalyst system, especially for internal branched alkenes. In situ infrared spectroscopy (IR), electron paramagnetic resonance (EPR), and nuclear magnetic resonance studies support the proposed catalyst formulation. IR studies reveal the formation of a dicationic Co(I) paramagnetic CO-bridged dimer, [Co2(µ-CO)2(CO)(bisphosphine)2]2+, at lower temperatures formed from the reaction of two catalyst complexes via the elimination of H2. DFT studies indicate a dimer structure with square-pyramidal and tetrahedral cobalt centers. This monomer-dimer equilibrium is analogous to that seen for HCo(CO)4, reacting to eliminate H2 and form Co2(CO)8. EPR studies on the catalyst show a high-spin (S = 3/2) Co(II) complex. Reaction studies are presented that support the cationic Co(II) bisphosphine catalyst as the catalyst species present in this system and minimize the possible role of neutral Co(I) species, HCo(CO)4 or HCo(CO)3(phosphine), as catalysts.

2.
Science ; 367(6477): 542-548, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32001650

ABSTRACT

The cobalt complexes HCo(CO)4 and HCo(CO)3(PR3) were the original industrial catalysts used for the hydroformylation of alkenes through reaction with hydrogen and carbon monoxide to produce aldehydes. More recent and expensive rhodium-phosphine catalysts are hundreds of times more active and operate under considerably lower pressures. Cationic cobalt(II) bisphosphine hydrido-carbonyl catalysts that are far more active than traditional neutral cobalt(I) catalysts and approach rhodium catalysts in activity are reported here. These catalysts have low linear-to-branched (L:B) regioselectivity for simple linear alkenes. However, owing to their high alkene isomerization activity and increased steric effects due to the bisphosphine ligand, they have high L:B selectivities for internal alkenes with alkyl branches. These catalysts exhibit long lifetimes and substantial resistance to degradation reactions.

3.
Inorg Chem ; 53(19): 10036-8, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25207432

ABSTRACT

A new binucleating tetraphosphine ligand, rac- and meso-(Et2P-1,2-C6H4)P(Ph)CH2(Ph)P(1,2-C6H4PEt2) (et,ph-P4-Ph), has been synthesized. Separation and purification of the ligand diastereomers have been accomplished via column chromatography. Ni2Cl4(et,ph-P4-Ph) complexes of both diastereomers have been prepared in high yield and crystallographically characterized.

4.
J Colloid Interface Sci ; 413: 167-74, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24183446

ABSTRACT

New synthesis techniques are providing increasing control over many inorganic nanoparticle characteristics, facilitating the creation of new multifunctional theranostics. This report proposes the synthesis and testing of a combination nanoparticle comprised of a maghemite core for enhanced T2 MRI contrast diagnostics, a colloidal silver shell acting as an antimicrobial and therapeutic vehicle, and a ceragenin (CSA-124) surfactant providing microbial adhesion. A polyacrylic acid functionalized maghemite nanoparticle is synthesized by a high temperature organic phase reduction followed by thiol functionalization and gold cluster seeding. A silver shell is formed through AgNO3 reduction, and an oriented monolayer of the thiolated ceragenin, is bound through a self-assembly process. The process and products are characterized throughout synthesis through TEM, DLS, FT-IR, UV-Vis, ICP-OES, HPLC-ESI-TOF-MS, DC magnetization and susceptibility, X-ray diffraction, and in vitro MRI. Synthesized Diagnostic Antimicrobial Nanoparticles (DANs) were found to have a spherical morphology with a diameter of 32.47±1.83 nm, hydrodynamic diameter of 53.05±1.20 nm, maximum magnetic moment of 12 emu/g NP (54 emu/g Fe) with little variation due to temperature, and are predominantly paramagnetic. In vitro MRI studies show that DANs contrast well at concentrations as low as 9 ppm, and successfully adhere to Staphylococcus aureus. DAN MIC was determined to be approximately 12 ppm and 24 ppm against S. aureus and Escherichia coli respectively.


Subject(s)
Bacteria/chemistry , Ferric Compounds/chemistry , Silver/chemistry , Steroids/chemistry , Chromatography, High Pressure Liquid , Microscopy, Electron, Transmission , Spectrometry, Mass, Electrospray Ionization , X-Ray Diffraction
5.
Org Lett ; 15(21): 5558-61, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24134120

ABSTRACT

A visible-light-promoted method for the selenofunctionalization (and tellurofunctionalization) of alkenes has been developed. This method obviates the prepreparation of moisture-sensitive chalcogen electrophiles. The experimental setup is simple, and superior yields are obtained in the case of selenofunctionalization (up to 99%) while moderate to good yields are obtained in the case of tellurofunctionalization (53-75%). A variety of intra- and intermolecular processes and a short synthesis of the Amaryllidaceae alkaloid (±)-γ-lycorane are demonstrated with this method.

6.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 11): m1408-9, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23284375

ABSTRACT

The dirhodium complex, [Rh(2)(C(18)H(15)P)(4)(CO)(2)]·2(CH(3))(2)CO, has crystallographic twofold symmetry and the Rh-Rh distance is 2.6266 (8) Å. The four atoms proximate to each Rh atom [Rh-P = 2.3222 (7) and 2.3283 (8) Å, and Rh-C = 1.961 (3) and 2.045 (3) Å] form a distorted tetra-hedron with large deviations from the putative tetra-hedral angles [r.m.s. deviation = 23 (1)°]. The six angles more closely approximate those of a trigonal bipyramid [r.m.s. deviation = 14 (1)°] with one missing equatorial ligand. The two bridging carbonyl ligands are much more linearly coordinated to one Rh [Rh-C O = 151.0 (2)°] than to the other [127.0 (2)°], and the two Rh(2)CO planes form a dihedral angle of 45.43 (5)°. The two acetone solvent mol-ecules are disordered, and their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE routine in PLATON [Spek (2009 ▶). Acta Cryst.D65, 148-155].

7.
Inorg Chem ; 49(12): 5385-92, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20499856

ABSTRACT

The M-H-M bonding in the dinuclear complexes Ni(2)(mu-H)(mu-P(2))(2)X(2) (P(2) = R(2)PCH(2)PR(2), R = iPr, Cy; X = Cl, Br) has been investigated. These dinickel A-frames were studied via density functional theory (DFT) calculations to analyze the factors that influence linear and bent M-H-M bonding. The DFT calculations indicate that the bent geometry is favored electronically, with ligand steric effects driving the formation of the linear M-H-M structures.


Subject(s)
Electrons , Nickel/chemistry , Organometallic Compounds/chemistry , Ligands , Molecular Dynamics Simulation , Molecular Structure , Quantum Theory , Stereoisomerism
8.
Acta Crystallogr C ; 62(Pt 5): o268-70, 2006 May.
Article in English | MEDLINE | ID: mdl-16679600

ABSTRACT

In the title compound, C2H8N+.C12H11O5P2-, pairs of hydrogen diphenyldiphosphonate anions form dimers across a twofold axis, with two symmetric O...H...O hydrogen bonds [O...O = 2.406 (3) and 2.418 (3) A]. The 12-membered ring thus formed has crystallographic 2 and quasi-222 symmetry. Cations on either side of the ring form N-H...O hydrogen bonds to the four extraannular O atoms, with N...O distances of 2.765 (2) and 2.748 (3) A.


Subject(s)
Diphosphonates/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Molecular Structure
9.
J Am Chem Soc ; 126(43): 13926-7, 2004 Nov 03.
Article in English | MEDLINE | ID: mdl-15506745

ABSTRACT

Single-crystal X-ray diffraction experiments show that the Be atoms in CeBe13 form a Be12 icosahedra, which is a very unusual structural feature due, in part, to the remarkably low valence electron count of Be. Magnetization studies show that CeBe13 displays intermediate valence behavior, in which valence fluctuations between the Ce 4f0 and 4f1 states give rise to enhanced electronic specific heat and magnetic susceptibility. Calculations using ab initio theory were used to determine the electronic structure and bonding and to give insight into the relationship between the crystal structure, the bonding, and the intermediate valence behavior of CeBe13. The hybridization between the localized f electrons and the conduction electrons is responsible for the large values of the electronic specific heat coefficient (gamma approximately 100 mJ/mol K2) and magnetic susceptibility (chi approximately 1 x 10-3 emu/mol), which is in marked contrast to those of ordinary metals that have gamma approximately 1 mJ/mol K2 and chi approximately 1 x 10-5 emu/mol values. The magnetic susceptibility, chi = M/H versus T, of a single crystal of CeBe13 exhibits a broad maximum at Tmax approximately 130 K and is typical of intermediate valence systems with an unusually large energy scale (Kondo), TK approximately 500 K.

10.
Inorg Chem ; 42(22): 7026-36, 2003 Nov 03.
Article in English | MEDLINE | ID: mdl-14577768

ABSTRACT

Crystal structures of three Ni(CN)(4)(2)(-) salts all with eclipsed ligands and varying axial stacking arrangements are presented. The absorption spectra of all three salts show a slight red shift in the x,y-polarizations and a large red shift in their z-polarizations upon crystallization from solution. Semiempirical ZINDO calculations provide a good model of the solid state, even with only a three-molecule segment, allowing reproduction of the red-shifting and intensity increase upon crystallization found experimentally. The modified nickel beta(s,p) bonding parameter of -5 found appropriate for Ni coordination in our previous studies of single Ni(CN)(4)(2-) planes and a helically stacked Cs(2)[Ni(CN)(4)].H(2)O crystal was changed to -3 for the more parallel-stacked Ni(CN)(4)(2-) planes in this case, while beta(d) was retained at -41. Crystal data are as follows: Na(2)[Ni(CN)(4)].3H(2)O, triclinic space group P1, a = 7.2980(10) A, b = 8.8620(10) A, c = 15.132(2) A, alpha = 89.311(5) degrees, beta = 87.326(5) degrees, gamma = 83.772(6) degrees, V = 971.8(2) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.064; Sr[Ni(CN)(4)].5H(2)O, monoclinic space group C2/m, a = 10.356(2) A, b = 15.272(3) A, c = 7.1331(10) A, beta = 98.548(12) degrees, V = 1115.6(3) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.059; Rb(2)[Ni(CN)(4)].1.05H(2)O, triclinic space group P1, a = 8.6020(10) A, b = 9.6930(10) A, c = 12.006(2) A, alpha = 92.621(6) degrees, beta = 94.263(6) degrees, gamma = 111.795(10) degrees, V = 924.0(2) A(3), T = 100 K, Z = 4, R = 0.034, R(w) = 0.067.

11.
J Am Chem Soc ; 125(37): 11180-1, 2003 Sep 17.
Article in English | MEDLINE | ID: mdl-16220923

ABSTRACT

The addition of 30% water (by volume) to acetone creates a remarkably effective polar phase solvent system for a dicationic dirhodium tetraphosphine hydroformylation catalyst. The initial turnover frequency (TOF) increases by 265% (to 73 min-1) for the hydroformylation of 1-hexene relative to the initial TOF in pure acetone (20 min-1). The aldehyde linear to branched (L:B) ratio increases to 33:1, and alkene isomerization and hydrogenation side reactions are essentially eliminated. Comparisons with monometallic rhodium catalysts based on PPh3, Bisbi, Naphos, and Xantphos ligands demonstrate that this polar-phase bimetallic catalyst is one of the fastest and most selective hydroformylation systems known under these mild conditions (90 degrees C, 6.2 bar H2/CO). The monometallic catalysts also show rate enhancements (although considerably smaller) in water-acetone, but Rh-Xantphos does show a large increase of 115%, with considerably reduced alkene isomerization side reactions. The dramatic effect of water on the dirhodium catalyst system is believed to be due to simple inhibition of the fragmentation of the catalytically active species into inactive mono- and bimetallic complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...