Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612120

ABSTRACT

Poly(ethylene furanoate) (PEF)-based nanocomposites were fabricated with silver (Ag) and titanium dioxide (TiO2) nanoparticles by the in-situ polymerization method. The importance of this research work is to extend the usage of PEF-based nanocomposites with improved material properties. The PEF-Ag and PEF-TiO2 nanocomposites showed a significant improvement in color concentration, as determined by the color colorimeter. Scanning electron microscopy (SEM) photographs revealed the appearance of small aggregates on the surface of nanocomposites. According to crystallinity investigations, neat PEF and nanocomposites exhibit crystalline fraction between 0-6%, whereas annealed samples showed a degree of crystallinity value above 25%. Combining the structural and molecular dynamics observations from broadband dielectric spectroscopy (BDS) measurements found strong interactions between polymer chains and nanoparticles. Contact angle results exhibited a decrease in the wetting angle of nanocomposites compared to neat PEF. Finally, antimicrobial studies have been conducted, reporting a significant rise in inhibition of over 15% for both nanocomposite films against gram-positive and gram-negative bacteria. From the overall results, the synthesized PEF-based nanocomposites with enhanced thermal and antimicrobial properties may be optimized and utilized for the secondary packaging (unintended food-contact) materials.

2.
Polymers (Basel) ; 15(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37376353

ABSTRACT

This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples' intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure-properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82-87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.

3.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231946

ABSTRACT

Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.

SELECTION OF CITATIONS
SEARCH DETAIL
...