Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(6): 3587-3604, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38833534

ABSTRACT

Nature continually refines its processes for optimal efficiency, especially within biological systems. This article explores the collaborative efforts of researchers worldwide, aiming to mimic nature's efficiency by developing smarter and more effective nanoscale technologies and biomaterials. Recent advancements highlight progress and prospects in leveraging engineered nucleic acids and proteins for specific tasks, drawing inspiration from natural functions. The focus is developing improved methods for characterizing, understanding, and reprogramming these materials to perform user-defined functions, including personalized therapeutics, targeted drug delivery approaches, engineered scaffolds, and reconfigurable nanodevices. Contributions from academia, government agencies, biotech, and medical settings offer diverse perspectives, promising a comprehensive approach to broad nanobiotechnology objectives. Encompassing topics from mRNA vaccine design to programmable protein-based nanocomputing agents, this work provides insightful perspectives on the trajectory of nanobiotechnology toward a future of enhanced biomimicry and technological innovation.


Subject(s)
Biocompatible Materials , Nanotechnology , Biocompatible Materials/chemistry , Humans , Biotechnology , Drug Delivery Systems
2.
Trends Genet ; 40(6): 511-525, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641471

ABSTRACT

Ribonucleases (RNases) play important roles in supporting canonical and non-canonical roles of tRNAs by catalyzing the cleavage of the tRNA phosphodiester backbone. Here, we highlight how recent advances in cryo-electron microscopy (cryo-EM), protein structure prediction, reconstitution experiments, tRNA sequencing, and other studies have revealed new insight into the nucleases that process tRNA. This represents a very diverse group of nucleases that utilize distinct mechanisms to recognize and cleave tRNA during different stages of a tRNA's life cycle including biogenesis, fragmentation, surveillance, and decay. In this review, we provide a synthesis of the structure, mechanism, regulation, and modes of tRNA recognition by tRNA nucleases, along with open questions for future investigation.


Subject(s)
Cryoelectron Microscopy , RNA, Transfer , Ribonucleases , RNA, Transfer/genetics , RNA, Transfer/chemistry , Ribonucleases/genetics , Ribonucleases/chemistry , Ribonucleases/metabolism , Humans , Nucleic Acid Conformation
4.
J Biol Chem ; 299(9): 105138, 2023 09.
Article in English | MEDLINE | ID: mdl-37544645

ABSTRACT

Through its role in intron cleavage, tRNA splicing endonuclease (TSEN) plays a critical function in the maturation of intron-containing pre-tRNAs. The catalytic mechanism and core requirement for this process is conserved between archaea and eukaryotes, but for decades, it has been known that eukaryotic TSENs have evolved additional modes of RNA recognition, which have remained poorly understood. Recent research identified new roles for eukaryotic TSEN, including processing or degradation of additional RNA substrates, and determined the first structures of pre-tRNA-bound human TSEN complexes. These recent discoveries have changed our understanding of how the eukaryotic TSEN targets and recognizes substrates. Here, we review these recent discoveries, their implications, and the new questions raised by these findings.


Subject(s)
Endoribonucleases , Eukaryota , RNA Precursors , RNA Splicing , RNA, Transfer , Humans , Introns/genetics , Nucleic Acid Conformation , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Substrate Specificity , Eukaryota/enzymology , Endoribonucleases/chemistry , Endoribonucleases/metabolism
5.
Nat Struct Mol Biol ; 30(6): 824-833, 2023 06.
Article in English | MEDLINE | ID: mdl-37231153

ABSTRACT

Throughout bacteria, archaea and eukarya, certain tRNA transcripts contain introns. Pre-tRNAs with introns require splicing to form the mature anticodon stem loop. In eukaryotes, tRNA splicing is initiated by the heterotetrameric tRNA splicing endonuclease (TSEN) complex. All TSEN subunits are essential, and mutations within the complex are associated with a family of neurodevelopmental disorders known as pontocerebellar hypoplasia (PCH). Here, we report cryo-electron microscopy structures of the human TSEN-pre-tRNA complex. These structures reveal the overall architecture of the complex and the extensive tRNA binding interfaces. The structures share homology with archaeal TSENs but contain additional features important for pre-tRNA recognition. The TSEN54 subunit functions as a pivotal scaffold for the pre-tRNA and the two endonuclease subunits. Finally, the TSEN structures enable visualization of the molecular environments of PCH-causing missense mutations, providing insight into the mechanism of pre-tRNA splicing and PCH.


Subject(s)
Endoribonucleases , RNA Precursors , Humans , RNA Precursors/metabolism , Cryoelectron Microscopy , Endoribonucleases/metabolism , RNA Splicing , Introns , RNA, Transfer/metabolism , Archaea , Eukaryota/genetics , Nucleic Acid Conformation
6.
Biomolecules ; 13(1)2023 01 12.
Article in English | MEDLINE | ID: mdl-36671538

ABSTRACT

Inositol pyrophosphates (PP-InsPs); are a functionally diverse family of eukaryotic molecules that deploy a highly-specialized array of phosphate groups as a combinatorial cell-signaling code. One reductive strategy to derive a molecular-level understanding of the many actions of PP-InsPs is to individually characterize the proteins that bind them. Here, we describe an alternate approach that seeks a single, collective rationalization for PP-InsP binding to an entire group of proteins, i.e., the multiple nucleolar proteins previously reported to bind 5-InsP7 (5-diphospho-inositol-1,2,3,4,6-pentakisphosphate). Quantitative confocal imaging of the outer nucleolar granular region revealed its expansion when cellular 5-InsP7 levels were elevated by either (a) reducing the 5-InsP7 metabolism by a CRISPR-based knockout (KO) of either NUDT3 or PPIP5Ks; or (b), the heterologous expression of wild-type inositol hexakisphosphate kinase, i.e., IP6K2; separate expression of a kinase-dead IP6K2 mutant did not affect granular volume. Conversely, the nucleolar granular region in PPIP5K KO cells shrank back to the wild-type volume upon attenuating 5-InsP7 synthesis using either a pan-IP6K inhibitor or the siRNA-induced knockdown of IP6K1+IP6K2. Significantly, the inner fibrillar volume of the nucleolus was unaffected by 5-InsP7. We posit that 5-InsP7 acts as an 'electrostatic glue' that binds together positively charged surfaces on separate proteins, overcoming mutual protein-protein electrostatic repulsion the latter phenomenon is a known requirement for the assembly of a non-membranous biomolecular condensate.


Subject(s)
Diphosphates , Inositol , Signal Transduction , Phosphorylation
7.
Nat Commun ; 13(1): 6783, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351913

ABSTRACT

PELP1 (Proline-, Glutamic acid-, Leucine-rich protein 1) is a large scaffolding protein that functions in many cellular pathways including steroid receptor (SR) coactivation, heterochromatin maintenance, and ribosome biogenesis. PELP1 is a proto-oncogene whose expression is upregulated in many human cancers, but how the PELP1 scaffold coordinates its diverse cellular functions is poorly understood. Here we show that PELP1 serves as the central scaffold for the human Rix1 complex whose members include WDR18, TEX10, and SENP3. We reconstitute the mammalian Rix1 complex and identified a stable sub-complex comprised of the conserved PELP1 Rix1 domain and WDR18. We determine a 2.7 Å cryo-EM structure of the subcomplex revealing an interconnected tetrameric assembly and the architecture of PELP1's signaling motifs, including eleven LxxLL motifs previously implicated in SR signaling and coactivation of Estrogen Receptor alpha (ERα) mediated transcription. However, the structure shows that none of these motifs is in a conformation that would support SR binding. Together this work establishes that PELP1 scaffolds the Rix1 complex, and association with WDR18 may direct PELP1's activity away from SR coactivation.


Subject(s)
Breast Neoplasms , Transcription Factors , Animals , Humans , Female , Co-Repressor Proteins/metabolism , Transcription Factors/metabolism , Cryoelectron Microscopy , Protein Binding , Signal Transduction , Mammals/metabolism , Cysteine Endopeptidases/metabolism , Nuclear Proteins/metabolism
8.
PNAS Nexus ; 1(4): pgac118, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36090660

ABSTRACT

Rix7 is an essential AAA+ ATPase that functions during the early stages of ribosome biogenesis. Rix7 is composed of three domains including an N-terminal domain (NTD) and two AAA+ domains (D1 and D2) that assemble into an asymmetric stacked hexamer. It was recently established that Rix7 is a presumed protein translocase that removes substrates from preribosomes by translocating them through its central pore. However, how the different domains of Rix7 coordinate their activities within the overall hexameric structure was unknown. We captured cryo-electron microscopy (EM) structures of single and double Walker B variants of full length Rix7. The disordered NTD was not visible in the cryo-EM reconstructions, but cross-linking mass spectrometry revealed that the NTD can associate with the central channel in vitro. Deletion of the disordered NTD enabled us to obtain a structure of the Rix7 hexamer to 2.9 Å resolution, providing high resolution details of critical motifs involved in substrate translocation and interdomain communication. This structure coupled with cell-based assays established that the linker connecting the D1 and D2 domains as well as the pore loops lining the central channel are essential for formation of the large ribosomal subunit. Together, our work shows that Rix7 utilizes a complex communication network to drive ribosome biogenesis.

9.
J Mol Biol ; 434(20): 167796, 2022 10 30.
Article in English | MEDLINE | ID: mdl-35995266

ABSTRACT

Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9 + million SARS-CoV-2 sequences revealed mutations across Nsp15's three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo.


Subject(s)
COVID-19 , Endoribonucleases , SARS-CoV-2 , Uridylate-Specific Endoribonucleases , Viral Nonstructural Proteins , COVID-19/virology , Endoribonucleases/chemistry , Endoribonucleases/genetics , Humans , Recombinant Proteins/chemistry , SARS-CoV-2/enzymology , Uridylate-Specific Endoribonucleases/chemistry , Uridylate-Specific Endoribonucleases/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
10.
Nucleic Acids Res ; 50(14): 8290-8301, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35801916

ABSTRACT

Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is a uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.


Subject(s)
COVID-19 , Endoribonucleases , Endoribonucleases/metabolism , Humans , RNA, Double-Stranded/genetics , SARS-CoV-2/genetics , Uridine , Viral Nonstructural Proteins/metabolism
11.
bioRxiv ; 2022 May 12.
Article in English | MEDLINE | ID: mdl-35611336

ABSTRACT

Global sequencing efforts from the ongoing COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, continue to provide insight into the evolution of the viral genome. Coronaviruses encode 16 nonstructural proteins, within the first two-thirds of their genome, that facilitate viral replication and transcription as well as evasion of the host immune response. However, many of these viral proteins remain understudied. Nsp15 is a uridine-specific endoribonuclease conserved across all coronaviruses. The nuclease activity of Nsp15 helps the virus evade triggering an innate immune response. Understanding how Nsp15 has changed over the course of the pandemic, and how mutations affect its RNA processing function, will provide insight into the evolution of an oligomerization-dependent endoribonuclease and inform drug design. In combination with previous structural data, bioinformatics analyses of 1.9+ million SARS-CoV-2 sequences revealed mutations across Nsp15’s three structured domains (N-terminal, Middle, EndoU). Selected Nsp15 variants were characterized biochemically and compared to wild type Nsp15. We found that mutations to important catalytic residues decreased cleavage activity but increased the hexamer/monomer ratio of the recombinant protein. Many of the highly prevalent variants we analyzed led to decreased nuclease activity as well as an increase in the inactive, monomeric form. Overall, our work establishes how Nsp15 variants seen in patient samples affect nuclease activity and oligomerization, providing insight into the effect of these variants in vivo .

12.
FEBS Open Bio ; 12(9): 1567-1583, 2022 09.
Article in English | MEDLINE | ID: mdl-35445579

ABSTRACT

Coronaviruses use approximately two-thirds of their 30-kb genomes to encode nonstructural proteins (nsps) with diverse functions that assist in viral replication and transcription, and evasion of the host immune response. The SARS-CoV-2 pandemic has led to renewed interest in the molecular mechanisms used by coronaviruses to infect cells and replicate. Among the 16 Nsps involved in replication and transcription, coronaviruses encode two ribonucleases that process the viral RNA-an exonuclease (Nsp14) and an endonuclease (Nsp15). In this review, we discuss recent structural and biochemical studies of these nucleases and the implications for drug discovery.


Subject(s)
COVID-19 , Viral Nonstructural Proteins , Humans , Mutation , Ribonucleases , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
13.
bioRxiv ; 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35262076

ABSTRACT

Coronaviruses generate double-stranded (ds) RNA intermediates during viral replication that can activate host immune sensors. To evade activation of the host pattern recognition receptor MDA5, coronaviruses employ Nsp15, which is uridine-specific endoribonuclease. Nsp15 is proposed to associate with the coronavirus replication-transcription complex within double-membrane vesicles to cleave these dsRNA intermediates. How Nsp15 recognizes and processes dsRNA is poorly understood because previous structural studies of Nsp15 have been limited to small single-stranded (ss) RNA substrates. Here we present cryo-EM structures of SARS-CoV-2 Nsp15 bound to a 52nt dsRNA. We observed that the Nsp15 hexamer forms a platform for engaging dsRNA across multiple protomers. The structures, along with site-directed mutagenesis and RNA cleavage assays revealed critical insight into dsRNA recognition and processing. To process dsRNA Nsp15 utilizes a base-flipping mechanism to properly orient the uridine within the active site for cleavage. Our findings show that Nsp15 is a distinctive endoribonuclease that can cleave both ss- and dsRNA effectively.

14.
Wiley Interdiscip Rev RNA ; 13(5): e1717, 2022 09.
Article in English | MEDLINE | ID: mdl-35156311

ABSTRACT

The splicing of transfer RNA (tRNA) introns is a critical step of tRNA maturation, for intron-containing tRNAs. In eukaryotes, tRNA splicing is a multi-step process that relies on several RNA processing enzymes to facilitate intron removal and exon ligation. Splicing is initiated by the tRNA splicing endonuclease (TSEN) complex which catalyzes the excision of the intron through its two nuclease subunits. Mutations in all four subunits of the TSEN complex are linked to a family of neurodegenerative and neurodevelopmental diseases known as pontocerebellar hypoplasia (PCH). Recent studies provide molecular insights into the structure, function, and regulation of the eukaryotic TSEN complex and are beginning to illuminate how mutations in the TSEN complex lead to neurodegenerative disease. Using new advancements in the prediction of protein structure, we created a three-dimensional model of the human TSEN complex. We review functions of the TSEN complex beyond tRNA splicing by highlighting recently identified substrates of the eukaryotic TSEN complex and discuss mechanisms for the regulation of tRNA splicing, by enzymes that modify cleaved tRNA exons and introns. Finally, we review recent biochemical and animal models that have worked to address the mechanisms that drive PCH and synthesize these studies with previous studies to try to better understand PCH pathogenesis. This article is categorized under: RNA Processing > tRNA Processing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.


Subject(s)
Neurodegenerative Diseases , Animals , Cerebellar Diseases , Endoribonucleases/metabolism , Humans , Introns , Neurodegenerative Diseases/genetics , RNA Precursors/genetics , RNA Splicing , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism
15.
Nucleic Acids Res ; 49(17): 10136-10149, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34403466

ABSTRACT

Nsp15 is a uridine specific endoribonuclease that coronaviruses employ to cleave viral RNA and evade host immune defense systems. Previous structures of Nsp15 from across Coronaviridae revealed that Nsp15 assembles into a homo-hexamer and has a conserved active site similar to RNase A. Beyond a preference for cleaving RNA 3' of uridines, it is unknown if Nsp15 has any additional substrate preferences. Here, we used cryo-EM to capture structures of Nsp15 bound to RNA in pre- and post-cleavage states. The structures along with molecular dynamics and biochemical assays revealed critical residues involved in substrate specificity, nuclease activity, and oligomerization. Moreover, we determined how the sequence of the RNA substrate dictates cleavage and found that outside of polyU tracts, Nsp15 has a strong preference for purines 3' of the cleaved uridine. This work advances our understanding of how Nsp15 recognizes and processes viral RNA, and will aid in the development of new anti-viral therapeutics.


Subject(s)
Endoribonucleases/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , Uridine/chemistry , Viral Nonstructural Proteins/metabolism , COVID-19/virology , Catalytic Domain/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Protein Multimerization/physiology , RNA, Viral/genetics , Substrate Specificity
16.
J Vis Exp ; (172)2021 06 01.
Article in English | MEDLINE | ID: mdl-34152326

ABSTRACT

Polysome fractionation by sucrose density gradient centrifugation is a powerful tool that can be used to create ribosome profiles, identify specific mRNAs being translated by ribosomes, and analyze polysome associated factors. While automated gradient makers and gradient fractionation systems are commonly used with this technique, these systems are generally expensive and can be cost-prohibitive for laboratories that have limited resources or cannot justify the expense due to their infrequent or occasional need to perform this method for their research. Here, a protocol is presented to reproducibly generate polysome profiles using standard equipment available in most molecular biology laboratories without specialized fractionation instruments. Moreover, a comparison of polysome profiles generated with and without a gradient fractionation system is provided. Strategies to optimize and produce reproducible polysome profiles are discussed. Saccharomyces cerevisiae is utilized as a model organism in this protocol. However, this protocol can be easily modified and adapted to generate ribosome profiles for many different organisms and cell types.


Subject(s)
Ribosomes , Saccharomyces cerevisiae , Cell Fractionation , Centrifugation, Density Gradient , Molecular Biology , Polyribosomes/genetics , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
17.
Nat Commun ; 12(1): 636, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504779

ABSTRACT

Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.


Subject(s)
Endoribonucleases/chemistry , Endoribonucleases/ultrastructure , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/ultrastructure , Amino Acid Sequence , Catalytic Domain , Cryoelectron Microscopy , Endoribonucleases/metabolism , Models, Chemical , Models, Molecular , SARS-CoV-2/chemistry , Uridine Triphosphate/metabolism , Viral Nonstructural Proteins/metabolism
18.
Crit Rev Biochem Mol Biol ; 56(1): 88-108, 2021 02.
Article in English | MEDLINE | ID: mdl-33349060

ABSTRACT

HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.


Subject(s)
Endoribonucleases/metabolism , Proteolysis , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Animals , CRISPR-Cas Systems , Catalytic Domain , Endoribonucleases/chemistry , Endoribonucleases/genetics , Humans , Protein Conformation, alpha-Helical , Protein Multimerization , RNA Stability , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Toxin-Antitoxin Systems
19.
Curr Opin Struct Biol ; 67: 51-60, 2021 04.
Article in English | MEDLINE | ID: mdl-33099228

ABSTRACT

The production of ribosomes is essential for ensuring the translational capacity of cells. Because of its high energy demand ribosome production is subject to stringent cellular controls. Hundreds of ribosome assembly factors are required to facilitate assembly of nascent ribosome particles with high fidelity. Many ribosome assembly factors organize into macromolecular machines that drive complex steps of the production pathway. Recent advances in structural biology, in particular cryo-EM, have provided detailed information about the structure and function of these higher order enzymatic assemblies. Here, we summarize recent structures revealing molecular insight into these macromolecular machines with an emphasis on the interplay between discrete active sites.


Subject(s)
Ribosomes , Cryoelectron Microscopy , Macromolecular Substances
20.
bioRxiv ; 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32803198

ABSTRACT

New therapeutics are urgently needed to inhibit SARS-CoV-2, the virus responsible for the on-going Covid-19 pandemic. Nsp15, a uridine-specific endoribonuclease found in all coronaviruses, processes viral RNA to evade detection by RNA-activated host defense systems, making it a promising drug target. Previous work with SARS-CoV-1 established that Nsp15 is active as a hexamer, yet how Nsp15 recognizes and processes viral RNA remains unknown. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15. The UTP-bound cryo-EM reconstruction at 3.36 Å resolution provides molecular details into how critical residues within the Nsp15 active site recognize uridine and facilitate catalysis of the phosphodiester bond, whereas the apo-states reveal active site conformational heterogeneity. We further demonstrate the specificity and mechanism of nuclease activity by analyzing Nsp15 products using mass spectrometry. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL
...