Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
N Biotechnol ; 44: 59-63, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-29702249

ABSTRACT

Enzyme-mediated biocatalysis is generally more selective and environmentally friendly and requires less energy than chemocatalysis. However, factors such as temperature, acidity and the presence of proteases can negate enzyme activity. Encapsulation in virus-like particles is one promising method to mitigate these difficulties. Encapsulation also can be used to create multi-reaction nanoreactors that increase process efficiency by isolating reaction intermediates. To successfully encapsulate enzymes, a variety of methods involving both non-covalent and covalent interactions have been developed. Here we review promising virus-like particle encapsulation strategies, their advantages and remaining challenges.


Subject(s)
Enzymes, Immobilized/chemistry , Virion/chemistry
2.
Appl Spectrosc ; 72(7): 1057-1068, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29336602

ABSTRACT

High-density polyethylene (HDPE) has been extensively studied, both as a model for semi-crystalline polymers and because of its own industrial utility. During cold drawing, crystalline regions of HDPE are known to break up and align with the direction of tensile load. Structural changes due to deformation should also manifest at the surface of the polymer, but until now, a detailed molecular understanding of how the surface responds to mechanical deformation has been lacking. This work establishes a precedent for using vibrational sum-frequency generation (VSFG) spectroscopy to investigate changes in the molecular-level structure of the surface of HDPE after cold drawing. X-ray diffraction (XRD) was used to confirm that the observed surface behavior corresponds to the expected bulk response. Before tensile loading, the VSFG spectra indicate that there is significant variability in the surface structure and tilt of the methylene groups away from the surface normal. After deformation, the VSFG spectroscopic signatures are notably different. These changes suggest that hydrocarbon chains at the surface of visibly necked HDPE are aligned with the direction of loading, while the associated methylene groups are oriented with the local C2v symmetry axis roughly parallel to the surface normal. Small amounts of unaltered material are also found at the surface of necked HDPE, with the relative amount of unaltered material decreasing as the amount of deformation increases. Aspects of the nonresonant SFG response in the transition zone between necked and undeformed polymer provide additional insight into the deformation process and may provide the first indication of mechanical deformation. Nonlinear surface spectroscopy can thus be used as a noninvasive and nondestructive tool to probe the stress history of a HPDE sample in situations where X-ray techniques are not available or not applicable. Vibrational sum-frequency generation thus has great potential as a platform for material state awareness (MSA) and should be considered as part of a broader suite of tools for such applications.

3.
Proc Natl Acad Sci U S A ; 113(42): E6325-E6334, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27698119

ABSTRACT

Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor-Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90-96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.


Subject(s)
Aquatic Organisms , Earth, Planet , Extinction, Biological , Models, Theoretical , Paleontology , Animals , Biodiversity , Ecology , Fossils
4.
Mindfulness (N Y) ; 6(5): 1104-1114, 2015.
Article in English | MEDLINE | ID: mdl-26379795

ABSTRACT

Evidence for the effectiveness of mindfulness-based stress reduction (MBSR) and mindfulness-based cognitive therapy (MBCT) is rapidly growing as interest in this field expands. By contrast, there are few empirical analyses of the pedagogy of MBSR and MBCT. Development of the evidence base concerning the teaching of MBCT or MBSR would support the integrity of the approach in the context of rapid expansion. This paper describes an applied conversation analysis (CA) of the characteristics of inquiry in the MBSR and MBCT teaching process. Audio-recordings of three 8-week MBCT and MBSR classes, with 24, 12, and 6 participants, were transcribed and systematically examined. The study focused on the teacher-led interactive inquiry which takes place in each session after a guided meditation practice. The study describes and analyzes three practices within the inquiry process that can be identified in sequences of talk: turn-taking talk involving questions and reformulations; the development of participant skills in a particular way of describing experience; and talk that constructs intersubjective connection and affiliation within the group. CA enables fine-grained analysis of the interactional work of mindfulness-based inquiry. Inquiry is a process of disciplined improvisation which is both highly specific to the conditions of the moment it took place in and uses repeated and recognizable patterns of interaction.

5.
Sci Transl Med ; 5(193): 193ra90, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23843451

ABSTRACT

Intracranial hemorrhage in preterm neonates may result in neonatal mortality and functional disabilities, but its pathogenic mechanisms are poorly defined and better therapies are needed. We used a tetracycline-regulated transgenic system to test whether the induction of vascular endothelial growth factor (VEGF) in the germinal matrix leads to intracranial hemorrhage. This genetic strategy initially induced a dense network of loosely adjoined endothelial cells and pericytes near lateral ventricles, similar to the immature vascular rete in human fetal brains. Yet, this rich vascular network transformed into low-vasculature patches correlated with hemorrhage and caspase-3 activation near birth. Gene expression and biochemical analyses suggested that downstream mediators of VEGF in this network include transcriptional factors ETS1 and HIF2α (hypoxia-inducible factor 2α), components of the PDGFß (platelet-derived growth factor ß) and TGFß (transforming growth factor-ß) receptor signaling pathways, matrix metalloproteinase-9 (MMP-9), and cathepsins. Prenatal administration of glucocorticoids markedly reduced mortality and cerebral hemorrhage in mutant animals, as in human neonates. This protective effect was not due to blocking vasculogenesis, but was instead associated with inhibition of neurovascular proteases, notably MMP-9, cathepsin B, and caspase-3. Collectively, these results support a causative role of VEGF in perinatal cerebral hemorrhage and implicate its downstream proteases as potential therapeutic targets.


Subject(s)
Cerebral Hemorrhage/enzymology , Cerebral Hemorrhage/pathology , Peptide Hydrolases/biosynthesis , Prosencephalon/enzymology , Prosencephalon/pathology , Vascular Endothelial Growth Factor A/metabolism , Animals , Animals, Newborn , Betamethasone/pharmacology , Betamethasone/therapeutic use , Caspase 3/metabolism , Cathepsin B/metabolism , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/genetics , Disease Models, Animal , Embryo, Mammalian/drug effects , Embryo, Mammalian/pathology , Enzyme Activation/drug effects , Enzyme Induction/drug effects , Gene Expression Profiling , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Neovascularization, Pathologic/drug therapy , Phenotype , Prosencephalon/blood supply , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Tetracycline/pharmacology
6.
Appl Radiat Isot ; 70(7): 1162-5, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22698817

ABSTRACT

Sellafield Nuclear Reprocessing Plant in Cumbria contains storage ponds built in the 1950s which was originally intended to hold spent nuclear fuel for reprocessing, and eventual production of weapons grade plutonium. Parts of the spent fuel have corroded; some are buried under a layer of sediment or intertwined with other debris and removal and destruction of this nuclear waste is not a trivial task due to elevated radiation levels. We propose a system in collaboration with the National Nuclear Laboratory (NNL) to characterise the ponds using a system containing three main parts; an ultrasonic SONAR system used to physically map the pond, scintillator based radiation detector (known as RadLine™) used to map the pond from a radiation point of view, and bespoke software intended to combine the physical and radiation plots of this environment to create an overall 3D source map.

7.
Health Phys ; 103(1): 100-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22647921

ABSTRACT

The overall objective of this study was to demonstrate that a new technology, known as RadBall®, could locate submerged radiological hazards. RadBall® is a novel, passive, radiation detection device that provides a 3-D visualization of radiation from areas where measurements have not been previously possible due to lack of access or extremely high radiation doses. This technology has been under development during recent years, and all of its previous tests have included dry deployments. This study involved, for the first time, underwater RadBall® deployments in hot cells containing 137CsCl capsules at the U.S. Department of Energy's Hanford Site. RadBall® can be used to characterize a contaminated room, hot cell, or glovebox by providing the locations of the radiation sources and hazards, identifying the radionuclides present within the cell, and determining the radiation sources' strength (e.g., intensities or dose rates). These parameters have been previously determined for dry deployments; however, only the location of radiation sources and hazards can be determined for an underwater RadBall® deployment. The results from this study include 3-D images representing the location of the radiation sources within the Hanford Site cells. Due to RadBall®'s unique deployability and non-electrical nature, this technology shows significant promise for future characterization of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.


Subject(s)
Cesium/analysis , Chlorides/analysis , Nuclear Reactors , Radiation Monitoring/instrumentation , Radioactive Pollutants/analysis , Capsules , Immersion , Washington
8.
Health Phys ; 102(2): 196-207, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22217592

ABSTRACT

RadBall™ is a novel technology that can locate unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semisphere. The collimator has a number of small holes; as a result, specific areas of the polymer are exposed to radiation, becoming increasingly more opaque in proportion to the absorbed dose. The polymer semisphere is imaged in an optical computed tomography scanner that produces a high resolution three-dimensional map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data, using a reverse ray tracing technique, provides information on the spatial distribution of gamma-ray sources in a given area, forming a three-dimensional characterization of the area of interest. The RadBall™ technology and its reverse ray tracing technique were investigated using known radiation sources at the Savannah River Site's Health Physics Instrument Calibration Laboratory and unknown sources at the Savannah River National Laboratory's Shielded Cells facility.


Subject(s)
Radiation Monitoring/instrumentation , Radiation Monitoring/methods , Radiometry , Tomography, X-Ray Computed
9.
Proc Natl Acad Sci U S A ; 107(45): 19185-9, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21041682

ABSTRACT

Conspicuous global stable carbon isotope excursions that are recorded in marine sedimentary rocks of Phanerozoic age and were associated with major extinctions have generally paralleled global stable oxygen isotope excursions. All of these phenomena are therefore likely to share a common origin through global climate change. Exceptional patterns for carbon isotope excursions resulted from massive carbon burial during warm intervals of widespread marine anoxic conditions. The many carbon isotope excursions that parallel those for oxygen isotopes can to a large degree be accounted for by the Q10 pattern of respiration for bacteria: As temperature changed along continental margins, where ∼90% of marine carbon burial occurs today, rates of remineralization of isotopically light carbon must have changed exponentially. This would have reduced organic carbon burial during global warming and increased it during global cooling. Also contributing to the δ(13)C excursions have been release and uptake of methane by clathrates, the positive correlation between temperature and degree of fractionation of carbon isotopes by phytoplankton at temperatures below ∼15°, and increased phytoplankton productivity during "icehouse" conditions. The Q10 pattern for bacteria and climate-related changes in clathrate volume represent positive feedbacks for climate change.


Subject(s)
Bacteria/metabolism , Carbon Isotopes/analysis , Climate Change , Extinction, Biological , Oxygen Isotopes/analysis , Carbon Isotopes/metabolism , Geologic Sediments/microbiology , Marine Biology , Oxygen Isotopes/metabolism , Phytoplankton/metabolism
10.
J Phys Conf Ser ; 250(1): 398-402, 2010.
Article in English | MEDLINE | ID: mdl-21617738

ABSTRACT

The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall(™), consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

11.
J Phys Conf Ser ; 250(1): 403-407, 2010.
Article in English | MEDLINE | ID: mdl-21617740

ABSTRACT

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall(™), which can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. RadBall(™) consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly more opaque, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner, which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation matrix provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. RadBall(™) has no power requirements and can be positioned in tight or hard-to reach locations. The RadBall(™) technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This study focuses on the RadBall(™) testing and modeling accomplished at SRNL.

12.
Proc Natl Acad Sci U S A ; 106(36): 15264-7, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19721005

ABSTRACT

Ammonoids and conodonts, being characterized by exceptionally high background rates of origination and extinction, were vulnerable to global environmental crises, which characteristically intensified background rates of extinction. Thus, it is not surprising that these taxa suffered conspicuous mass extinctions at the times of three negative Early Triassic global carbon isotopic excursions that resembled those associated with the two preceding Permian mass extinctions. In keeping with their high rates of origination, both the ammonoids and conodonts rediversified dramatically between the Early Triassic crises. Other marine taxa, characterized by much lower intrinsic rates of origination, were held at low levels of diversity by the Early Triassic crises; because global mass extinctions affect all marine life, these taxa must have experienced relatively modest expansions and contractions that have yet to be discovered, because they do not stand out in the fossil record and because the stratigraphic ranges of these taxa, being of little value for temporal correlation, have not been thoroughly studied.


Subject(s)
Biological Evolution , Cephalopoda/physiology , Extinction, Biological , Fossils , Vertebrates/physiology , Animals , Carbon Isotopes/analysis , History, Ancient , Paleontology , Time Factors
14.
Proc Natl Acad Sci U S A ; 99(24): 15323-6, 2002 Nov 26.
Article in English | MEDLINE | ID: mdl-12399549

ABSTRACT

Shifts in the MgCa ratio of seawater driven by changes in midocean ridge spreading rates have produced oscillations in the mineralogy of nonskeletal carbonate precipitates from seawater on time scales of 10(8) years. Since Cambrian time, skeletal mineralogies of anatomically simple organisms functioning as major reef builders or producers of shallow marine limestones have generally corresponded in mineral composition to nonskeletal precipitates. Here we report on experiments showing that the ambient MgCa ratio actually governs the skeletal mineralogy of some simple organisms. In modern seas, coralline algae produce skeletons of high-Mg calcite (>4 mol % MgCO(3)). We grew three species of these algae in artificial seawaters having three different MgCa ratios. All of the species incorporated amounts of Mg into their skeletons in proportion to the ambient MgCa ratio, mimicking the pattern for nonskeletal precipitation. Thus, the algae calcified as if they were simply inducing precipitation from seawater through their consumption of CO(2) for photosynthesis; presumably organic templates specify the calcite crystal structure of their skeletons. In artificial seawater with the low MgCa ratio of Late Cretaceous seas, the algae in our experiments produced low-Mg calcite (<4 mol % MgCO(3)), the carbonate mineral formed by nonskeletal precipitation in those ancient seas. Our results suggest that many taxa that produce high-Mg calcite today produced low-Mg calcite in Late Cretaceous seas.


Subject(s)
Anthozoa/metabolism , Calcium Carbonate/chemistry , Magnesium/chemistry , Seawater/chemistry , Anthozoa/drug effects , Calcium/chemistry , Calcium/metabolism , Calcium Carbonate/metabolism , Evolution, Molecular , Magnesium/metabolism , Paleontology , Solutions/pharmacology
15.
Evolution ; 36(3): 460-473, 1982 May.
Article in English | MEDLINE | ID: mdl-28568035
16.
Evolution ; 28(3): 447-457, 1974 Sep.
Article in English | MEDLINE | ID: mdl-28564856
17.
Evolution ; 27(1): 1-26, 1973 Mar.
Article in English | MEDLINE | ID: mdl-28563664
SELECTION OF CITATIONS
SEARCH DETAIL
...