Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Viruses ; 15(12)2023 12 16.
Article in English | MEDLINE | ID: mdl-38140688

ABSTRACT

Influenza antiviral drugs are important tools in our fight against both annual influenza epidemics and pandemics. Polyphenols are a group of compounds found in plants, some of which have demonstrated promising antiviral activity. Previous in vitro and mouse studies have outlined the anti-influenza virus effectiveness of the polyphenol epigallocatechin-3-gallate (EGCG); however, no study has utilised the ferret model, which is considered the gold-standard for influenza antiviral studies. This study aimed to explore the antiviral efficacy of EGCG in vitro and in ferrets. We first performed studies in Madin-Darby Canine Kidney (MDCK) and human lung carcinoma (Calu-3) cells, which demonstrated antiviral activity. In MDCK cells, we observed a selective index (SI, CC50/IC50) of 77 (290 µM/3.8 µM) and 96 (290 µM/3.0 µM) against A/California/07/2009 and A/Victoria/2570/2019 (H1N1)pdm09 influenza virus, respectively. Calu-3 cells demonstrated a SI of 16 (420 µM/26 µM) and 18 (420 µM/24 µM). Ferrets infected with A/California/07/2009 influenza virus and treated with EGCG (500 mg/kg/day for 4 days) had no change in respiratory tissue viral titres, in contrast to oseltamivir treatment, which significantly reduced viral load in the lungs of treated animals. Therefore, we demonstrated that although EGCG showed antiviral activity in vitro against influenza viruses, the drug failed to impair viral replication in the respiratory tract of ferrets.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Animals , Dogs , Humans , Mice , Influenza, Human/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Tea , Ferrets
2.
Virology ; 576: 117-126, 2022 11.
Article in English | MEDLINE | ID: mdl-36228351

ABSTRACT

Canine distemper virus (CDV) causes a highly contagious systemic infection in an array of animal species. In this study we report an outbreak of distemper in ferrets in two research facilities in Australia, caused by a novel lineage of CDV. While the CDV strain caused mainly mild symptoms in ferrets, histopathology results presented a typical profile of distemper pathology, with multi-system virus replication. Through the development of a discriminatory PCR, paired with full genome sequencing, we revealed that the outbreak was caused by a novel lineage of CDV. The novel CDV lineage was highly divergent, with less than 93% similarity across the H gene to other described lineages, including the vaccine strain, and diverged approximately 140-400 years ago. Enhanced surveillance to determine the prevalence of CDV in ferrets, dogs and other at-risk species is critical to better understand the presence and diversity of CDV in Australia currently.


Subject(s)
Distemper Virus, Canine , Distemper , Animals , Dogs , Distemper Virus, Canine/genetics , Distemper/epidemiology , Distemper/prevention & control , Ferrets , Australia/epidemiology
3.
Commun Biol ; 5(1): 1026, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171475

ABSTRACT

Influenza antivirals are important tools in our fight against annual influenza epidemics and future influenza pandemics. Combinations of antivirals may reduce the likelihood of drug resistance and improve clinical outcomes. Previously, two hospitalised immunocompromised influenza patients, who received a combination of a neuraminidase inhibitor and baloxavir marboxil, shed influenza viruses resistant to both drugs. Here-in, the replicative fitness of one of these A(H1N1)pdm09 virus isolates with dual resistance mutations (NA-H275Y and PA-I38T) was similar to wild type virus (WT) in vitro, but reduced in the upper respiratory tracts of challenged ferrets. The dual-mutant virus transmitted well between ferrets in an airborne transmission model, but was outcompeted by the WT when the two viruses were co-administered. These results indicate the dual-mutant virus had a moderate loss of viral fitness compared to the WT virus, suggesting that while person-to-person transmission of the dual-resistant virus may be possible, widespread community transmission is unlikely.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Ferrets , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/drug therapy , Neuraminidase/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...