Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3D Print Addit Manuf ; 10(6): 1251-1259, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38116226

ABSTRACT

In this article, the multimaterial extrusion (M-MEX) technology is used to fabricate, in a single step, a three-dimensional printed soft electromagnetic (EM) actuator, based on internal channels, filled with soft liquid metal (Galinstan) and equipped with an embedded strain gauge, for the first time. At the state of the art, M-MEX techniques result underexploited for the manufacture of soft EM actuators: only traditional manufacturing approaches are used, resulting in many assembly steps. The main features of this work are as follows: (1) one shot fabrication, (2) smart structure equipped with sensor unit, and (3) scalability. The actuator was tested in conjunction with a commercial magnet, showing a bending angle of 22.4° (when activated at 4A), a relative error of 0.7%, and a very high sensor sensitivity of 49.7 Two more examples, showing all the potentialities of the proposed approach, are presented: a jumping frog-inspired soft robot and a dual independent two-finger actuator. This article aims to push the role of extrusion-based additive manufacturing for the fabrication of EM soft robots: several advantages such as portability, no cooling systems, fast responses, and noise reduction can be achieved by exploiting the proposed actuation system compared to the traditional and widespread actuation mechanisms (shape memory polymers, shape memory alloys, pneumatic actuation, and cable-driven actuation).

2.
3D Print Addit Manuf ; 10(5): 1080-1089, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37886406

ABSTRACT

The fabrication of bioinspired structures has recently gained an increasing popularity: mimicking the way in which nature develops structures is a vital prerequisite in soft robotics to achieve multiple benefits. Stiff structures connected by soft joints (recalling, for instance, human bones connected by cartilage) are highly appealing: several prototypes have been manufactured and tested, demonstrating their full potential. In the present research, the material extrusion (MEX) additive manufacturing technology has been used to manufacture stiff-soft bioinspired structures activated by shape memory alloy (SMA) actuators. First, three commercially available stiff composite plastic materials were investigated and linked to different 3D printing infills. Surprisingly, we found that the "gyroid" infill was correlated to the mechanical properties, demonstrating that it produces better results in terms of Young's modulus and ultimate tensile strength (UTS) than the widely studied "lines" infill. The primary focus of the research is an experimental study aimed at improving the adhesion at the interface between stiff and soft materials using an inexpensive method (i.e., MEX). Three different variables that have significant effects on the interface bonding were studied: (1) the interface geometry between stiff and soft parts, (2) the mesh overlapping process parameter, and (3) the annealing post-treatment. By optimizing the three variables, a Young's modulus of 48.8 MPa and a UTS of 3.8 MPa were achieved, when nylon+glass fiber (a stiff material) and thermoplastic polyurethane (a soft material) were 3D printed together. In particular, the 3.8 MPa UTS is 48% higher than the highest adhesion between the soft and stiff material (thermoplastic polyurethane [TPU] and acrylonitrile butadiene styrene) reported in literature. Finally, taking advantage of the improved stiff-soft adhesion, a bioinspired robotic finger has been fabricated and tested using an SMA actuator, showing an enormous potential for the proposed additive manufacturing approach in realizing bioinspired systems.

3.
Sensors (Basel) ; 21(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34640644

ABSTRACT

In this paper a new low-cost stretchable coplanar capacitive sensor for liquid level sensing is presented. It has been 3D-printed by employing commercial thermoplastic polyurethane (TPU) and conductive materials and using a fused filament fabrication (FFF) process for monolithic fabrication. The sensor presents high linearity and good repeatability when measuring sunflower oil level. Experiments were performed to analyse the behaviour of the developed sensor when applying bending stimuli, in order to verify its flexibility, and a thermal characterization was performed in the temperature range from 10 °C to 40 °C to evaluate its effect on sunflower oil level measurement. The experimental results showed negligible sensitivity of the sensor to bending stimuli, whereas the thermal characterization produced a model describing the relationship between capacitance, temperature, and oil level, allowing temperature compensation in oil level measurement. The different temperature cycles allowed to quantify the main sources of uncertainty, and their effect on level measurement was evaluated.


Subject(s)
Polyurethanes , Printing, Three-Dimensional , Electric Capacitance , Electric Conductivity , Temperature
4.
Micromachines (Basel) ; 11(5)2020 May 09.
Article in English | MEDLINE | ID: mdl-32397442

ABSTRACT

Air tightness is a challenging task for 3D-printed components, especially for fused filament fabrication (FFF), due to inherent issues, related to the layer-by-layer fabrication method. On the other hand, the capability of 3D print airtight cavities with complex shapes is very attractive for several emerging research fields, such as soft robotics. The present paper proposes a repeatable methodology to 3D print airtight soft actuators with embedded air connectors. The FFF process has been optimized to manufacture monolithic bending PneuNets (MBPs), an emerging class of soft robots. FFF has several advantages in soft robot fabrication: (i) it is a fully automated process which does not require manual tasks as for molding, (ii) it is one of the most ubiquitous and inexpensive (FFF 3D printers costs < $200) 3D-printing technologies, and (iii) more materials can be used in the same printing cycle which allows embedding of several elements in the soft robot body. Using commercial soft filaments and a dual-extruder 3D printer, at first, a novel air connector which can be easily embedded in each soft robot, made via FFF technology with a single printing cycle, has been fabricated and tested. This new embedded air connector (EAC) prevents air leaks at the interface between pneumatic pipe and soft robot and replaces the commercial air connections, often origin of leakages in soft robots. A subsequent experimental study using four different shapes of MBPs, each equipped with EAC, showed the way in which different design configurations can affect bending performance. By focusing on the best performing shape, among the tested ones, the authors studied the relationship between bending performance and air tightness, proving how the Design for Additive Manufacturing approach is essential for advanced applications involving FFF. In particular, the relationship between chamber wall thickness and printing parameters has been analyzed, the thickness of the walls has been studied from 1.6 to 1 mm while maintaining air tightness and improving the bending angle by 76.7% under a pressure of 4 bar. It emerged that the main printing parameter affecting chamber wall air tightness is the line width that, in conjunction with the wall thickness, can ensure air tightness of the soft actuator body.

SELECTION OF CITATIONS
SEARCH DETAIL
...