Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(16): 2921-2933, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36894318

ABSTRACT

RNA stability is meticulously controlled. Here, we sought to determine whether an essential post-transcriptional regulatory mechanism plays a role in pain. Nonsense-mediated decay (NMD) safeguards against translation of mRNAs that harbor premature termination codons and controls the stability of ∼10% of typical protein-coding mRNAs. It hinges on the activity of the conserved kinase SMG1. Both SMG1 and its target, UPF1, are expressed in murine DRG sensory neurons. SMG1 protein is present in both the DRG and sciatic nerve. Using high-throughput sequencing, we examined changes in mRNA abundance following inhibition of SMG1. We confirmed multiple NMD stability targets in sensory neurons, including ATF4. ATF4 is preferentially translated during the integrated stress response (ISR). This led us to ask whether suspension of NMD induces the ISR. Inhibition of NMD increased eIF2-α phosphorylation and reduced the abundance of the eIF2-α phosphatase constitutive repressor of eIF2-α phosphorylation. Finally, we examined the effects of SMG1 inhibition on pain-associated behaviors. Peripheral inhibition of SMG1 results in mechanical hypersensitivity in males and females that persists for several days and priming to a subthreshold dose of PGE2. Priming was fully rescued by a small-molecule inhibitor of the ISR. Collectively, our results indicate that suspension of NMD promotes pain through stimulation of the ISR.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in their plasticity which may contribute to chronic pain. Translational regulation has emerged as a dominant mechanism in pain. Here, we investigate the role of a major pathway of RNA surveillance called nonsense-mediated decay (NMD). Modulation of NMD is potentially beneficial for a broad array of diseases caused by frameshift or nonsense mutations. Our results suggest that inhibition of the rate-limiting step of NMD drives behaviors associated with pain through activation of the ISR. This work reveals complex interconnectivity between RNA stability and translational regulation and suggests an important consideration in harnessing the salubrious benefits of NMD disruption.


Subject(s)
Eukaryotic Initiation Factor-2 , Nociception , Male , Female , Humans , Mice , Animals , Eukaryotic Initiation Factor-2/genetics , Nonsense Mediated mRNA Decay , Phosphorylation , Pain , RNA Helicases/genetics , RNA Helicases/metabolism , Trans-Activators/genetics
2.
FASEB J ; 36(7): e22422, 2022 07.
Article in English | MEDLINE | ID: mdl-35747924

ABSTRACT

Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Humans , Male , Mice , Nociceptors , Pain/genetics , RNA, Messenger , Transcriptome
3.
Nat Commun ; 12(1): 6789, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815424

ABSTRACT

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.


Subject(s)
Elongation Factor 2 Kinase/metabolism , Peptide Elongation Factor 2/metabolism , Processing Bodies/metabolism , Ribosomes/metabolism , Animals , Cell Line, Tumor , Cryoelectron Microscopy , Elongation Factor 2 Kinase/genetics , Ganglia, Spinal/cytology , Humans , Male , Mice , Mice, Knockout , Nelfinavir/pharmacology , Phosphorylation/drug effects , Primary Cell Culture , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/ultrastructure
4.
Br J Pharmacol ; 178(23): 4675-4690, 2021 12.
Article in English | MEDLINE | ID: mdl-34355805

ABSTRACT

BACKGROUND AND PURPOSE: Translational controls pervade neurobiology. Nociceptors play an integral role in the detection and propagation of pain signals. Nociceptors can undergo persistent changes in their intrinsic excitability. Pharmacological disruption of nascent protein synthesis diminishes acute and chronic forms of pain-associated behaviours. However, the targets of translational controls that facilitate plasticity in nociceptors are unclear. EXPERIMENTAL APPROACH: We used ribosome profiling to probe the translational landscape in dorsal root ganglion (DRG) neurons from male Swiss-Webster mice, after treatment with nerve growth factor and IL-6. Expression dynamics of c-Fos were followed with immunoblotting and immunohistochemistry. The involvement of ribosomal protein S6 kinase 1 (S6K1), a downstream component of mTOR signalling, in the control of c-Fos levels was assessed with low MW inhibitors of S6K1 (DG2) or c-Fos (T-5224), studying their effects on nociceptor activity in vitro using multielectrode arrays (MEAs) and pain behaviour in vivo in Swiss-Webster mice using the hyperalgesic priming model. KEY RESULTS: c-Fos was expressed in sensory neurons. Inflammatory mediators that promote pain in both humans and rodents promote c-Fos translation. The mTOR effector S6K1 is essential for c-Fos biosynthesis. Inhibition of S6K1 or c-Fos with low MW compounds diminished mechanical and thermal hypersensitivity in response to inflammatory cues. Additionally, both inhibitors reduced evoked nociceptor activity. CONCLUSION AND IMPLICATIONS: Our data show a novel role of S6K1 in modulating the rapid response to inflammatory mediators, with c-Fos being one key downstream target. Targeting the S6 kinase pathway or c-Fos is an exciting new avenue for pain-modulating compounds.


Subject(s)
Nociceptors , Pain , Ribosomal Protein S6 Kinases, 90-kDa , Animals , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Male , Mice , Nociceptors/metabolism , Pain/drug therapy , Pain/metabolism , Ribosomal Protein S6 Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...