Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Echo Res Pract ; 10(1): 19, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38053157

ABSTRACT

BACKGROUND: Image and performance enhancing drugs (IPEDs) are commonly used in resistance trained (RT) individuals and negatively impact left ventricular (LV) structure and function. Few studies have investigated the impact of IPEDs on atrial structure and function with no previous studies investigating bi-atrial strain. Additionally, the impact of current use vs. past use of IPEDs is unclear. METHODS: Utilising a cross-sectional design, male (n = 81) and female (n = 15) RT individuals were grouped based on IPED user status: current (n = 57), past (n = 19) and non-users (n = 20). Participants completed IPED questionnaires, anthropometrical measurements, electrocardiography, and transthoracic echocardiography with strain imaging. Structural cardiac data was allometrically scaled to body surface area (BSA) according to laws of geometric similarity. RESULTS: Body mass and BSA were greater in current users than past and non-users of IPEDs (p < 0.01). Absolute left atrial (LA) volume (60 ± 17 vs 46 ± 12, p = 0.001) and right atrial (RA) area (19 ± 4 vs 15 ± 3, p < 0.001) were greater in current users than non-users but this difference was lost following scaling (p > 0.05). Left atrial reservoir (p = 0.008, p < 0.001) and conduit (p < 0.001, p < 0.001) strain were lower in current users than past and non-users (conduit: current = 22 ± 6, past = 29 ± 9 and non-users = 31 ± 7 and reservoir: current = 33 ± 8, past = 39 ± 8, non-users = 42 ± 8). Right atrial reservoir (p = 0.015) and conduit (p = 0.007) strain were lower in current than non-users (conduit: current = 25 ± 8, non-users = 33 ± 10 and reservoir: current = 36 ± 10, non-users = 44 ± 13). Current users showed reduced LV diastolic function (A wave: p = 0.022, p = 0.049 and E/A ratio: p = 0.039, p < 0.001) and higher LA stiffness (p = 0.001, p < 0.001) than past and non-users (A wave: current = 0.54 ± 0.1, past = 0.46 ± 0.1, non-users = 0.47 ± 0.09 and E/A ratio: current = 1.5 ± 0.5, past = 1.8 ± 0.4, non-users = 1.9 ± 0.4, LA stiffness: current = 0.21 ± 0.7, past = 0.15 ± 0.04, non-users = 0.15 ± 0.07). CONCLUSION: Resistance trained individuals using IPEDs have bi-atrial enlargement that normalises with allometric scaling, suggesting that increased size is, in part, associated with increased body size. The lower LA and RA reservoir and conduit strain and greater absolute bi-atrial structural parameters in current than non-users of IPEDs suggests pathological adaptation with IPED use, although the similarity in these parameters between past and non-users suggests reversibility of pathological changes with withdrawal.

2.
Cells ; 11(21)2022 10 23.
Article in English | MEDLINE | ID: mdl-36359740

ABSTRACT

(1) Background: Cushing's disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that stimulates the adrenal glands to overproduce cortisol. Chronic exposure to excess cortisol has detrimental effects on health, including increased stroke rates, diabetes, obesity, cognitive impairment, anxiety, depression, and death. The first-line treatment for CD is pituitary surgery. Current surgical remission rates reported in only 56% of patients depending on several criteria. The lack of specificity, poor tolerability, and low efficacy of the subsequent second-line medical therapies make CD a medical therapeutic challenge. One major limitation that hinders the development of specific medical therapies is the lack of relevant human model systems that recapitulate the cellular composition of PitNET microenvironment. (2) Methods: human pituitary tumor tissue was harvested during transsphenoidal surgery from CD patients to generate organoids (hPITOs). (3) Results: hPITOs generated from corticotroph, lactotroph, gonadotroph, and somatotroph tumors exhibited morphological diversity among the organoid lines between individual patients and amongst subtypes. The similarity in cell lineages between the organoid line and the patient's tumor was validated by comparing the neuropathology report to the expression pattern of PitNET specific markers, using spectral flow cytometry and exome sequencing. A high-throughput drug screen demonstrated patient-specific drug responses of hPITOs amongst each tumor subtype. Generation of induced pluripotent stem cells (iPSCs) from a CD patient carrying germline mutation CDH23 exhibited dysregulated cell lineage commitment. (4) Conclusions: The human pituitary neuroendocrine tumor organoids represent a novel approach in how we model complex pathologies in CD patients, which will enable effective personalized medicine for these patients.


Subject(s)
Neuroendocrine Tumors , Pituitary ACTH Hypersecretion , Pituitary Neoplasms , Humans , Pituitary ACTH Hypersecretion/drug therapy , Pituitary ACTH Hypersecretion/surgery , Organoids , Neuroendocrine Tumors/drug therapy , Hydrocortisone , Tumor Microenvironment
3.
Stem Cell Res ; 65: 102944, 2022 12.
Article in English | MEDLINE | ID: mdl-36257093

ABSTRACT

Pontocerebellar Hypoplasia 1B (PCH1B) is a severe autosomal recessive neurological disorder that is associated with mutations in the exosome complex component RRP40 (EXOSC3) gene. We generated and characterized an iPSC line from an individual with PCH1B that harbors a recessive homozygous c.395 A > C mutation in EXOSC3 and a family matched control from the probands unaffected mother. Each iPSC line presents with normal morphology and karyotype and express high levels of pluripotent markers. UAZTi009-A and UAZTi011-A are capable of directed differentiation and can be used as a vital experimental tool to study the development of PCH1B.


Subject(s)
Exosome Multienzyme Ribonuclease Complex , RNA-Binding Proteins , Humans , Mutation/genetics , Induced Pluripotent Stem Cells , Cell Line
4.
Proteomics ; 21(1): e2000071, 2021 01.
Article in English | MEDLINE | ID: mdl-33068326

ABSTRACT

Mole (MSR) and fractional (FSR) synthesis rates of proteins during C2C12 myoblast differentiation are investigated. Myoblast cultures supplemented with D2 O during 0-24 h or 72-96 h of differentiation are analyzed by LC-MS/MS to calculate protein FSR and MSR after samples are spiked with yeast alcohol dehydrogenase (ADH1). Profiling of 153 proteins detected 70 significant (p ≤ 0.05, FDR ≤ 1%) differences in abundance between cell states. Early differentiation is enriched by clusters of ribosomal and heat shock proteins, whereas later differentiation is associated with actin filament binding. The median (first-third quartile) FSR (%/h) during early differentiation 4.1 (2.7-5.3) is approximately twofold greater than later differentiation 1.7 (1.0-2.2), equating to MSR of 0.64 (0.38-1.2) and 0.28 (0.1-0.5) fmol h-1  µg-1 total protein, respectively. MSR corresponds more closely with abundance data and highlights proteins associated with glycolytic processes and intermediate filament protein binding that are not evident among FSR data. Similarly, MSR during early differentiation accounts for 78% of the variation in protein abundance during later differentiation, whereas FSR accounts for 4%. Conclusively, the interpretation of protein synthesis data differs when reported in mole or fractional terms, which has consequences when studying the allocation of cellular resources.


Subject(s)
Myoblasts , Protein Biosynthesis , Tandem Mass Spectrometry , Cell Differentiation , Chromatography, Liquid
5.
Expert Rev Proteomics ; 17(11-12): 813-825, 2020.
Article in English | MEDLINE | ID: mdl-33470862

ABSTRACT

INTRODUCTION: Exercise offers protection from non-communicable diseases and extends healthspan by offsetting natural physiological declines that occur in older age. Striated muscle is the largest bodily organ; it underpins the capacity for physical work, and the responses of muscle to exercise convey the health benefits of a physically active lifestyle. Proteomic surveys of muscle provide a means to study the protective effects of exercise and this review summaries some key findings from literature listed in PubMed during the last 10 years that have led to new insight in muscle exercise physiology. AREAS COVERED: 'Bottom-up' analyses involving liquid-chromatography tandem mass spectrometry (LC-MS/MS) of peptide digests have become the mainstay of proteomic studies and have been applied to muscle mitochondrial fractions. Enrichment techniques for post-translational modifications, including phosphorylation, acetylation and ubiquitination, have evolved and the analysis of site-specific modifications has become a major area of interest in exercise proteomics. Finally, we consider emergent techniques for dynamic analysis of muscle proteomes that offer new insight to protein turnover and the contributions of synthesis and degradation to changes in protein abundance in response to exercise training. EXPERT OPINION: Burgeoning methods for dynamic proteome profiling offer new opportunities to study the mechanisms of muscle adaptation.


Subject(s)
Exercise , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Proteomics , Chromatography, Liquid , Humans , Muscle Proteins/physiology , Muscle, Skeletal/physiology , Protein Processing, Post-Translational , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...