Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663399

ABSTRACT

Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.

2.
Nat Struct Mol Biol ; 31(2): 246-254, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38196032

ABSTRACT

Most membrane fusion reactions in eukaryotic cells are mediated by multisubunit tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here we present a cryo-electron microscopy structure of the simplest known MTC, the 255-kDa Dsl1 complex of Saccharomyces cerevisiae, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.


Subject(s)
SNARE Proteins , Saccharomyces cerevisiae Proteins , SNARE Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cryoelectron Microscopy , Saccharomyces cerevisiae/metabolism , Endoplasmic Reticulum/metabolism , Membrane Fusion
3.
Nature ; 620(7976): 1109-1116, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37612506

ABSTRACT

Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.


Subject(s)
Cryoelectron Microscopy , GTP Phosphohydrolases , Mitochondria , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/ultrastructure , Membrane Fusion , Mitochondria/enzymology , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Dynamics , Mitochondrial Membranes/metabolism , Mutation , Nucleotides/metabolism , Protein Binding/genetics , Protein Domains , Protein Folding , Protein Multimerization , Protein Structure, Secondary , Humans
4.
Curr Opin Cell Biol ; 83: 102191, 2023 08.
Article in English | MEDLINE | ID: mdl-37421936

ABSTRACT

The compartmentalization of eukaryotic cells is reliant on the fidelity of vesicle-mediated intracellular transport. Vesicles deliver their cargo via membrane fusion, a process requiring membrane tethers, Sec1/Munc18 (SM) proteins, and SNAREs. These components function in concert to ensure that membrane fusion is efficient and accurate, but the mechanisms underlying their cooperative action are still in many respects mysterious. In this brief review, we highlight recent progress toward a more integrative understanding of the vesicle fusion machinery. We focus particular attention on cryo-electron microscopy structures of intact multisubunit tethers in complex with SNAREs or SM proteins, as well as a structure of an SM protein bound to multiple SNAREs. The insights gained from this work emphasize the advantages of studying the fusion machinery intact and in context.


Subject(s)
Membrane Fusion , SNARE Proteins , Cryoelectron Microscopy , SNARE Proteins/metabolism , Munc18 Proteins/chemistry , Munc18 Proteins/metabolism
5.
bioRxiv ; 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36778436

ABSTRACT

Most membrane fusion reactions in eukaryotic cells are mediated by membrane tethering complexes (MTCs) and SNARE proteins. MTCs are much larger than SNAREs and are thought to mediate the initial attachment of two membranes. Complementary SNAREs then form membrane-bridging complexes whose assembly draws the membranes together for fusion. Here, we present a cryo-EM structure of the simplest known MTC, the 255-kDa Dsl1 complex, bound to the two SNAREs that anchor it to the endoplasmic reticulum. N-terminal domains of the SNAREs form an integral part of the structure, stabilizing a Dsl1 complex configuration with remarkable and unexpected similarities to the 850-kDa exocyst MTC. The structure of the SNARE-anchored Dsl1 complex and its comparison with exocyst reveal what are likely to be common principles underlying MTC function. Our structure also implies that tethers and SNAREs can work together as a single integrated machine.

6.
J Nutr ; 151(9): 2522-2532, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34132337

ABSTRACT

BACKGROUND: In humans, vitamin B-12 (cobalamin) transport involves 3 paralogous proteins: transcobalamin, haptocorrin, and intrinsic factor. Zebrafish (Danio rerio) express 3 genes that encode proteins homologous to known B-12 carrier proteins: tcn2 (a transcobalamin ortholog) and 2 atypical ß-domain-only homologs, tcnba and tcnbb. OBJECTIVES: Given the orthologous relation between zebrafish Tcn2 and human transcobalamin, we hypothesized that zebrafish carrying null mutations of tcn2 would exhibit phenotypes consistent with vitamin B-12 deficiency. METHODS: First-generation and second-generation tcn2-/- zebrafish were characterized using phenotypic assessments, metabolic analyses, viability studies, and transcriptomics. RESULTS: Homozygous tcn2-/- fish produced from a heterozygous cross are viable and fertile but exhibit reduced growth, which persists into adulthood. When first-generation female tcn2-/- fish are bred, their offspring exhibit gross developmental and metabolic defects. These phenotypes are observed in all offspring from a tcn2-/- female regardless of the genotype of the male mating partner, suggesting a maternal effect, and can be rescued with vitamin B-12 supplementation. Transcriptome analyses indicate that offspring from a tcn2-/- female exhibit expression profiles distinct from those of offspring from a tcn2+/+ female, which demonstrate dysregulation of visual perception, fatty acid metabolism, and neurotransmitter signaling pathways. CONCLUSIONS: Our findings suggest that the deposition of vitamin B-12 in the yolk by tcn2-/- females may be insufficient to support the early development of their offspring. These data present a compelling model to study the effects of vitamin B-12 deficiency on early development, with a particular emphasis on transgenerational effects and gene-environment interactions.


Subject(s)
Maternal Inheritance , Zebrafish , Adult , Animals , Female , Humans , Male , Transcobalamins/genetics , Vitamin B 12 , Vitamins , Zebrafish/genetics
7.
J Biol Chem ; 293(45): 17606-17621, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30237171

ABSTRACT

In humans, transport of food-derived cobalamin (vitamin B12) from the digestive system into the bloodstream involves three paralogous proteins: transcobalamin (TC), haptocorrin (HC), and intrinsic factor (IF). Each of these proteins contains two domains, an α-domain and a ß-domain, which together form a cleft in which cobalamin binds. Zebrafish (Danio rerio) are thought to possess only a single cobalamin transport protein, referred to as Tcn2, which is a transcobalamin homolog. Here, we used CRISPR/Cas9 mutagenesis to create null alleles of tcn2 in zebrafish. Fish homozygous for tcn2-null alleles were viable and exhibited no obvious developmentally or behaviorally abnormal phenotypes. For this reason, we hypothesized that previously unidentified cobalamin-carrier proteins encoded in the zebrafish genome may provide an additional pathway for cobalamin transport. We identified genes predicted to code for two such proteins, Tcn-beta-a (Tcnba) and Tcn-beta-b (Tcnbb), which differ from all previously characterized cobalamin transport proteins as they lack the α-domain. These ß-domain-only proteins are representative of an undescribed class of cobalamin-carrier proteins that are highly conserved throughout the ray-finned fishes. We observed that the genes encoding the three cobalamin transport homologs, tcn2, tcnba, and tcnbb, are expressed in unique spatial and temporal patterns in the developing zebrafish. Moreover, exogenously expressed recombinant Tcnba and Tcnbb bound cobalamin with high affinity, comparable with binding by full-length Tcn2. Taken together, our results suggest that this noncanonical protein structure has evolved to fully function as a cobalamin-carrier protein, thereby allowing for a compensatory cobalamin transport mechanism in the tcn2-/- zebrafish.


Subject(s)
Transcobalamins , Zebrafish , Animals , CRISPR-Cas Systems , Protein Domains , Transcobalamins/chemistry , Transcobalamins/genetics , Transcobalamins/metabolism , Vitamin B 12/chemistry , Vitamin B 12/genetics , Vitamin B 12/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...