Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 119(3): 189-98, 2016 May 26.
Article in English | MEDLINE | ID: mdl-27225202

ABSTRACT

In March 2010 and January 2012, we documented 2 widespread and severe coral disease outbreaks on reefs throughout Kane'ohe Bay, Hawai'i (USA). The disease, acute Montipora white syndrome (aMWS), manifested as acute and progressive tissue loss on the common reef coral M. capitata. Rapid visual surveys in 2010 revealed 338 aMWS-affected M. capitata colonies with a disease abundance of (mean ± SE) 0.02 ± 0.01 affected colonies per m of reef surveyed. In 2012, disease abundance was significantly higher (1232 aMWS-affected colonies) with 0.06 ± 0.02 affected colonies m(-1). Prior surveys found few acute tissue loss lesions in M. capitata in Ka¯ne'ohe Bay; thus, the high number of infected colonies found during these outbreaks would classify this as an emerging disease. Disease abundance was highest in the semi-enclosed region of south Kane'ohe Bay, which has a history of nutrient and sediment impacts from terrestrial runoff and stream discharge. In 2010, tagged colonies showed an average tissue loss of 24% after 1 mo, and 92% of the colonies continued to lose tissue in the subsequent month but at a slower rate (chronic tissue loss). The host-specific nature of this disease (affecting only M. capitata) and the apparent spread of lesions between M. capitata colonies in the field suggest a potential transmissible agent. The synchronous appearance of affected colonies on multiple reefs across Kane'ohe Bay suggests a common underlying factor. Both outbreaks occurred during the colder, rainy winter months, and thus it is likely that some parameter(s) associated with winter environmental conditions are linked to the emergence of disease outbreaks on these reefs.


Subject(s)
Anthozoa/microbiology , Bays , Ecosystem , Animal Distribution , Animals , Anthozoa/classification , Hawaii , Host-Pathogen Interactions , Seasons , Species Specificity , Time Factors , Virulence
2.
Mol Ecol ; 23(22): 5552-65, 2014 11.
Article in English | MEDLINE | ID: mdl-25283736

ABSTRACT

Hybridization in the ocean was once considered rare, a process prohibited by the rapid evolution of intrinsic reproductive barriers in a high-dispersal medium. However, recent genetic surveys have prompted a reappraisal of marine hybridization as an important demographic and evolutionary process. The Hawaiian Archipelago offers an unusual case history in this arena, due to the recent arrival of the widely distributed Indo-Pacific sergeant (Abudefduf vaigiensis), which is hybridizing with the endemic congener, A. abdominalis. Surveys of mtDNA and three nuclear loci across Hawai'i (N = 396, Abudefduf abdominalis and N = 314, A. vaigiensis) reveal that hybridization is significantly higher in the human-perturbed southeast archipelago (19.8%), tapering off to 5.9% in the pristine northwest archipelago. While densities of the two species varied throughout Hawai'i, hybridization was highest in regions with similar species densities, contradicting the generalization that the rarity of one species promotes interspecific mating. Our finding of later generation hybrids throughout the archipelago invokes the possibility of genetic swamping of the endemic species. Exaptation, an adaptation with unintended consequences, may explain these findings: the endemic species has transient yellow coloration during reproduction, whereas the introduced species has yellow coloration continuously as adults, in effect a permanent signal of reproductive receptivity. Haplotype diversity is higher in Hawaiian A. vaigiensis than in our samples from the native range, indicating large-scale colonization almost certainly facilitated by the historically recent surge of marine debris. In this chain of events, marine debris promotes colonization, exaptation promotes hybridization, and introgression invokes the possible collapse of an endemic species.


Subject(s)
Hybridization, Genetic , Introduced Species , Perciformes/genetics , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetics, Population , Hawaii , Introns , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...