Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Cell Rep ; 43(6): 114259, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38819988

ABSTRACT

CD4+ T cells are central to adaptive immunity. Their role in cross-protection in viral infections such as influenza and severe acute respiratory syndrome (SARS) is well documented; however, molecular rules governing T cell receptor (TCR) engagement of peptide-human leukocyte antigen (pHLA) class II are less understood. Here, we exploit an aspect of HLA class II presentation, the peptide-flanking residues (PFRs), to "tune" CD4+ T cell responses within an in vivo model system of influenza. Using a recombinant virus containing targeted substitutions at immunodominant HLA-DR1 epitopes, we demonstrate limited weight loss and improved clinical scores after heterosubtypic re-challenge. We observe enhanced protection linked to lung-derived influenza-specific CD4+ and CD8+ T cells prior to re-infection. Structural analysis of the ternary TCR:pHLA complex identifies that flanking amino acids influence side chains in the core 9-mer peptide, increasing TCR affinity. Augmentation of CD4+ T cell immunity is achievable with a single mutation, representing a strategy to enhance adaptive immunity that is decoupled from vaccine modality.

2.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687323

ABSTRACT

The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.


Subject(s)
Cytomegalovirus , Endoplasmic Reticulum , Viral Envelope Proteins , Viral Proteins , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteolysis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Endoplasmic Reticulum-Associated Degradation , Host-Pathogen Interactions , Cell Membrane/metabolism , Cell Membrane/virology
3.
Cell Host Microbe ; 32(4): 466-478.e11, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38479395

ABSTRACT

Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.


Subject(s)
Cytomegalovirus , Proteomics , Humans , Cytomegalovirus/physiology , Virus Assembly , Virus Replication , Proteins , Autophagy , Lysosomes , Hydrogen-Ion Concentration
4.
iScience ; 27(2): 108801, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303725

ABSTRACT

The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.

5.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38063292

ABSTRACT

The shortcomings of current direct-acting anti-viral therapy against human cytomegalovirus (HCMV) has led to interest in host-directed therapy. Here we re-examine the use of interferon proteins to inhibit HCMV replication utilizing both high and low passage strains of HCMV. Pre-treatment of cells with interferon alpha (IFNα) was required for robust and prolonged inhibition of both low and high passage HCMV strains, with no obvious toxicity, and was associated with an increased anti-viral state in HCMV-infected cells. Pre-treatment of cells with IFNα led to poor expression of HCMV immediate-early proteins from both high and low passage strains, which was associated with the presence of the anti-viral factor SUMO-PML. Inhibition of HCMV replication in the presence of IFNα involving ZAP proteins was HCMV strain-dependent, wherein a high passage HCMV strain was obviously restricted by ZAP and a low passage strain was not. This suggested that strain-specific combinations of anti-viral factors were involved in inhibition of HCMV replication in the presence of IFNα. Overall, this work further supports the development of strategies involving IFNα that may be useful to inhibit HCMV replication and highlights the complexity of the anti-viral response to HCMV in the presence of IFNα.


Subject(s)
Cytomegalovirus , Interferon-alpha , Humans , Cytomegalovirus/physiology , Interferon-alpha/pharmacology , Transcription Factors/metabolism , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/metabolism
6.
Proc Natl Acad Sci U S A ; 120(49): e2309077120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011551

ABSTRACT

Human cytomegalovirus (HCMV) is a paradigm of pathogen immune evasion and sustains lifelong persistent infection in the face of exceptionally powerful host immune responses through the concerted action of multiple immune-evasins. These reduce NK cell activation by inhibiting ligands for activating receptors, expressing ligands for inhibitory receptors, or inhibiting synapse formation. However, these functions only inhibit direct interactions with the infected cell. To determine whether the virus also expresses soluble factors that could modulate NK function at a distance, we systematically screened all 170 HCMV canonical protein-coding genes. This revealed that UL4 encodes a secreted and heavily glycosylated protein (gpUL4) that is expressed with late-phase kinetics and is capable of inhibiting NK cell degranulation. Analyses of gpUL4 binding partners by mass spectrometry identified an interaction with TRAIL. gpUL4 bound TRAIL with picomolar affinity and prevented TRAIL from binding its receptor, thus acting as a TRAIL decoy receptor. TRAIL is found in both soluble and membrane-bound forms, with expression of the membrane-bound form strongly up-regulated on NK cells in response to interferon. gpUL4 inhibited apoptosis induced by soluble TRAIL, while also binding to the NK cell surface in a TRAIL-dependent manner, where it blocked NK cell degranulation and cytokine secretion. gpUL4 therefore acts as an immune-evasin by inhibiting both soluble and membrane-bound TRAIL and is a viral-encoded TRAIL decoy receptor. Interestingly, gpUL4 could also suppress NK responses to heterologous viruses, suggesting that it may act as a systemic virally encoded immunosuppressive agent.


Subject(s)
Cytomegalovirus , Killer Cells, Natural , Humans , Cytomegalovirus/physiology , Immune Evasion , Glycoproteins/metabolism , Apoptosis
7.
Proc Natl Acad Sci U S A ; 120(33): e2303155120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37561786

ABSTRACT

Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.


Subject(s)
Cytomegalovirus , Tumor Necrosis Factor-alpha , Humans , Cytomegalovirus/physiology , Tumor Necrosis Factor-alpha/metabolism , Proteome/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Proteomics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cytokines/metabolism , Cell Membrane/metabolism , Metalloproteases/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Membrane Glycoproteins/metabolism , Viral Proteins/metabolism
8.
Front Cell Infect Microbiol ; 13: 1207313, 2023.
Article in English | MEDLINE | ID: mdl-37424787

ABSTRACT

Introduction: The heterogeneity of the immunocompromised population means some individuals may exhibit variable, weak or reduced vaccine-induced immune responses, leaving them poorly protected from COVID-19 disease despite receiving multiple SARS-CoV-2 vaccinations. There is conflicting data on the immunogenicity elicited by multiple vaccinations in immunocompromised groups. The aim of this study was to measure both humoral and cellular vaccine-induced immunity in several immunocompromised cohorts and to compare them to immunocompetent controls. Methods: Cytokine release in peptide-stimulated whole blood, and neutralising antibody and baseline SARS-CoV-2 spike-specific IgG levels in plasma were measured in rheumatology patients (n=29), renal transplant recipients (n=46), people living with HIV (PLWH) (n=27) and immunocompetent participants (n=64) post third or fourth vaccination from just one blood sample. Cytokines were measured by ELISA and multiplex array. Neutralising antibody levels in plasma were determined by a 50% neutralising antibody titre assay and SARS-CoV-2 spike specific IgG levels were quantified by ELISA. Results: In infection negative donors, IFN-γ, IL-2 and neutralising antibody levels were significantly reduced in rheumatology patients (p=0.0014, p=0.0415, p=0.0319, respectively) and renal transplant recipients (p<0.0001, p=0.0005, p<0.0001, respectively) compared to immunocompetent controls, with IgG antibody responses similarly affected. Conversely, cellular and humoral immune responses were not impaired in PLWH, or between individuals from all groups with previous SARS-CoV-2 infections. Discussion: These results suggest that specific subgroups within immunocompromised cohorts could benefit from distinct, personalised immunisation or treatment strategies. Identification of vaccine non-responders could be critical to protect those most at risk.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Immunity, Cellular , Immunoglobulin G
9.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37427588

ABSTRACT

Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence indicates that antibody Fc effector functions may be a previously underappreciated component of maternal immunity against HCMV. We recently reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with protection against cCMV transmission, leading us to hypothesize that additional Fc-mediated antibody functions may be important. In this same cohort of HCMV-transmitting (n = 41) and nontransmitting (n = 40) mother-infant dyads, we report that higher maternal sera antibody-dependent cellular cytotoxicity (ADCC) activation is also associated with lower risk of cCMV transmission. We investigated the relationship between ADCC and IgG responses against 9 viral antigens and found that ADCC activation correlated most strongly with sera IgG binding to the HCMV immunoevasin protein UL16. Moreover, we determined that higher UL16-specific IgG binding and FcγRIII/CD16 engagement were associated with the greatest risk reduction in cCMV transmission. Our findings indicate that ADCC-activating antibodies against targets such as UL16 may represent an important protective maternal immune response against cCMV infection that can guide future HCMV correlates studies and vaccine or antibody-based therapeutic development.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Cytomegalovirus/physiology , Antibody-Dependent Cell Cytotoxicity , Antibodies, Viral , Immunoglobulin Fc Fragments , Immunoglobulin G
10.
JCI Insight ; 8(15)2023 08 08.
Article in English | MEDLINE | ID: mdl-37338994

ABSTRACT

Antibodies capable of neutralizing SARS-CoV-2 are well studied, but Fc receptor-dependent antibody activities that can also significantly impact the course of infection have not been studied in such depth. Since most SARS-CoV-2 vaccines induce only anti-spike antibodies, here we investigated spike-specific antibody-dependent cellular cytotoxicity (ADCC). Vaccination produced antibodies that weakly induced ADCC; however, antibodies from individuals who were infected prior to vaccination (hybrid immunity) elicited strong anti-spike ADCC. Quantitative and qualitative aspects of humoral immunity contributed to this capability, with infection skewing IgG antibody production toward S2, vaccination skewing toward S1, and hybrid immunity evoking strong responses against both domains. A combination of antibodies targeting both spike domains support strong antibody-dependent NK cell activation, with 3 regions of antibody reactivity outside the receptor-binding domain (RBD) corresponding with potent anti-spike ADCC. Consequently, ADCC induced by hybrid immunity with ancestral antigen was conserved against variants containing neutralization escape mutations in the RBD. Induction of antibodies recognizing a broad range of spike epitopes and eliciting strong and durable ADCC may partially explain why hybrid immunity provides superior protection against infection and disease compared with vaccination alone, and it demonstrates that spike-only subunit vaccines would benefit from strategies that induce combined anti-S1 and anti-S2 antibody responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Antibody-Dependent Cell Cytotoxicity , Immunity, Humoral , Immunoglobulin G
11.
J Virol ; 97(3): e0184622, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916924

ABSTRACT

Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.


Subject(s)
Cytomegalovirus , Interferon Type I , Humans , Cytomegalovirus/metabolism , Neurofibromin 2/metabolism , Neurofibromin 2/pharmacology , RNA-Binding Proteins/metabolism , Virus Replication/physiology , Antiviral Agents/pharmacology , Interferon Type I/metabolism , Zinc Fingers
12.
medRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993668

ABSTRACT

Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no licensed vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence from studies of natural infection and HCMV vaccine trials indicates that antibody Fc effector functions may defend against HCMV infection. We previously reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with reduced risk of cCMV transmission, leading us to hypothesize that other Fc-mediated antibody functions may also contribute to protection. In this same cohort of HCMV transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads, we found that higher maternal sera antibody-dependent cellular cytotoxicity (ADCC) activation was also associated with decreased risk of cCMV infection. We determined that NK cell-mediated ADCC responses correlated strongly with anti-HCMV IgG FcγRIII/CD16 activation and IgG binding to the HCMV immunoevasin protein UL16. Notably, anti-UL16 IgG binding and engagement of FcγRIII/CD16 were higher in non-transmitting versus transmitting dyads and interacted significantly with ADCC responses. These findings indicate that ADCC-activating antibodies against novel targets such as UL16 may represent an important protective maternal immune response against cCMV infection, which can guide future HCMV correlates studies and vaccine development.

13.
Front Immunol ; 14: 1107497, 2023.
Article in English | MEDLINE | ID: mdl-36845106

ABSTRACT

Introduction: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results: Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion: This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Histocompatibility Antigens Class I , Cytomegalovirus/metabolism , Minor Histocompatibility Antigens , Receptors, Antigen, T-Cell/metabolism
14.
Wellcome Open Res ; 7: 224, 2022.
Article in English | MEDLINE | ID: mdl-36483314

ABSTRACT

Background: Quantitative proteomics is able to provide a comprehensive, unbiased description of changes to cells caused by viral infection, but interpretation may be complicated by differential changes in infected and uninfected 'bystander' cells, or the use of non-physiological cellular models. Methods: In this paper, we use fluorescence-activated cell sorting (FACS) and quantitative proteomics to analyse cell-autonomous changes caused by authentic SARS-CoV-2 infection of respiratory epithelial cells, the main target of viral infection in vivo. First, we determine the relative abundance of proteins in primary human airway epithelial cells differentiated at the air-liquid interface (basal, secretory and ciliated cells). Next, we specifically characterise changes caused by SARS-CoV-2 infection of ciliated cells. Finally, we compare temporal proteomic changes in infected and uninfected 'bystander' Calu-3 lung epithelial cells and compare infection with B.29 and B.1.1.7 (Alpha) variants. Results: Amongst 5,709 quantified proteins in primary human airway ciliated cells, the abundance of 226 changed significantly in the presence of SARS-CoV-2 infection (q <0.05 and >1.5-fold). Notably, viral replication proceeded without inducing a type-I interferon response. Amongst 6,996 quantified proteins in Calu-3 cells, the abundance of 645 proteins changed significantly in the presence of SARS-CoV-2 infection (q < 0.05 and > 1.5-fold). In contrast to the primary cell model, a clear type I interferon (IFN) response was observed. Nonetheless, induction of IFN-inducible proteins was markedly attenuated in infected cells, compared with uninfected 'bystander' cells. Infection with B.29 and B.1.1.7 (Alpha) variants gave similar results. Conclusions: Taken together, our data provide a detailed proteomic map of changes in SARS-CoV-2-infected respiratory epithelial cells in two widely used, physiologically relevant models of infection. As well as identifying dysregulated cellular proteins and processes, the effectiveness of strategies employed by SARS-CoV-2 to avoid the type I IFN response is illustrated in both models.

15.
J Clin Invest ; 132(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36219482

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody (mAb) therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogated whether nucleocapsid-specific antibodies can improve protection against SARS-CoV-2. We first immunized mice with a nucleocapsid-based vaccine and then transferred sera from these mice into naive mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific mAb exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated, antibody-dependent cellular cytotoxicity (ADCC) against infected cells. To our knowledge, these findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based mAb therapies to treat COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Nucleocapsid , Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Nucleocapsid/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
16.
Nat Commun ; 13(1): 5422, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130936

ABSTRACT

T cells specific for SARS-CoV-2 are thought to protect against infection and development of COVID-19, but direct evidence for this is lacking. Here, we associated whole-blood-based measurement of SARS-CoV-2-specific interferon-γ-positive T cell responses with positive COVID-19 diagnostic (PCR and/or lateral flow) test results up to 6 months post-blood sampling. Amongst 148 participants donating venous blood samples, SARS-CoV-2-specific T cell response magnitude is significantly greater in those who remain protected versus those who become infected (P < 0.0001); relatively low magnitude T cell response results in a 43.2% risk of infection, whereas high magnitude reduces this risk to 5.4%. These findings are recapitulated in a further 299 participants testing a scalable capillary blood-based assay that could facilitate the acquisition of population-scale T cell immunity data (14.9% and 4.4%, respectively). Hence, measurement of SARS-CoV-2-specific T cells can prognosticate infection risk and should be assessed when monitoring individual and population immunity status.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Interferon-gamma , Polymerase Chain Reaction , T-Lymphocytes
17.
Prog Org Coat ; 172: 107135, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36035655

ABSTRACT

Viruses such as SARS-CoV-2 can remain viable on solid surfaces for up to one week, hence fomites are a potential route of exposure to infectious virus. Copper has well documented antiviral properties that could limit this problem, however practical deployment of copper surfaces has been limited due to the associated costs and the incompatibility of copper metal in specific environments and conditions. We therefore developed an organic coating containing an intelligent-release Cu2+ pigment based on a cation exchange resin. Organic coatings containing a 50 % weight or higher loading of smart-release pigment were capable of completely inactivating (>6 log reduction in titre) SARS-CoV-2 within 4 h of incubation. Importantly these organic coatings demonstrated a significantly enhanced ability to inactivate SARS-CoV-2 compared to metallic copper and un-pigmented material. Furthermore, the presence of contaminating proteins inhibited the antiviral activity of metallic copper, but the intelligent-release Cu2+ pigment was unaffected. The approach of using a very basic paint system, based on a polymer binder embedded with "smart release" pigment containing an anti-viral agent which is liberated by ion-exchange, holds significant promise as a cost effective and rapidly deployed coating to confer virus inactivating capability to high touch surfaces.

18.
Elife ; 112022 05 19.
Article in English | MEDLINE | ID: mdl-35587364

ABSTRACT

The outcome of infection is dependent on the ability of viruses to manipulate the infected cell to evade immunity, and the ability of the immune response to overcome this evasion. Understanding this process is key to understanding pathogenesis, genetic risk factors, and both natural and vaccine-induced immunity. SARS-CoV-2 antagonises the innate interferon response, but whether it manipulates innate cellular immunity is unclear. An unbiased proteomic analysis determined how cell surface protein expression is altered on SARS-CoV-2-infected lung epithelial cells, showing downregulation of activating NK ligands B7-H6, MICA, ULBP2, and Nectin1, with minimal effects on MHC-I. This occurred at the level of protein synthesis, could be mediated by Nsp1 and Nsp14, and correlated with a reduction in NK cell activation. This identifies a novel mechanism by which SARS-CoV-2 host-shutoff antagonises innate immunity. Later in the disease process, strong antibody-dependent NK cell activation (ADNKA) developed. These responses were sustained for at least 6 months in most patients, and led to high levels of pro-inflammatory cytokine production. Depletion of spike-specific antibodies confirmed their dominant role in neutralisation, but these antibodies played only a minor role in ADNKA compared to antibodies to other proteins, including ORF3a, Membrane, and Nucleocapsid. In contrast, ADNKA induced following vaccination was focussed solely on spike, was weaker than ADNKA following natural infection, and was not boosted by the second dose. These insights have important implications for understanding disease progression, vaccine efficacy, and vaccine design.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies , Antibodies, Viral , Humans , Killer Cells, Natural , Proteomics
19.
J Lipid Res ; 63(6): 100208, 2022 06.
Article in English | MEDLINE | ID: mdl-35436499

ABSTRACT

The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. Unlike cellular membranes, procoagulant amino-PLs were present on the external side of the viral envelope at levels exceeding those on activated platelets. Accordingly, virions directly promoted blood coagulation. To investigate whether these differences could enable selective targeting of the viral envelope in vivo, we tested whether oral rinses containing lipid-disrupting chemicals could reduce infectivity. Products containing PL-disrupting surfactants (such as cetylpyridinium chloride) met European virucidal standards in vitro; however, components that altered the critical micelle concentration reduced efficacy, and products containing essential oils, povidone-iodine, or chlorhexidine were ineffective. This result was recapitulated in vivo, where a 30-s oral rinse with cetylpyridinium chloride mouthwash eliminated live virus in the oral cavity of patients with coronavirus disease 19 for at least 1 h, whereas povidone-iodine and saline mouthwashes were ineffective. We conclude that the SARS-CoV-2 lipid envelope i) is distinct from the host plasma membrane, which may enable design of selective antiviral approaches; ii) contains exposed phosphatidylethanolamine and phosphatidylserine, which may influence thrombosis, pathogenicity, and inflammation; and iii) can be selectively targeted in vivo by specific oral rinses.


Subject(s)
COVID-19 , Mouthwashes , Antiviral Agents , Cetylpyridinium , Humans , Lipids , Mouthwashes/pharmacology , Povidone-Iodine , RNA, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...