Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 360: 142319, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735497

ABSTRACT

Recent toxicity studies of stormwater runoff implicated N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) as the contaminant responsible for the mass mortality of coho salmon (Oncorhynchus kisutch). In the wake of this discovery, 6PPD-quinone has been measured in waterways around urban centers, along with other tire wear leachates like hexamethoxymethylmelamine (HMMM). The limited data available for 6PPD-quinone have shown toxicity can vary depending on the species. In this study we compared the acute toxicity of 6PPD-quinone and HMMM to Brook trout (Salvelinus fontinalis) fry and fingerlings. Our results show that fry are ∼3 times more sensitive to 6PPD-quinone than fingerlings. Exposure to HMMM ≤6.6 mg/L had no impact on fry survival. These results highlight the importance of conducting toxicity tests on multiple life stages of fish species, and that relying on fingerling life stages for species-based risk assessment may underestimate the impacts of exposure. 6PPD-quinone also had many sublethal effects on Brook trout fingerlings, such as increased interlamellar cell mass (ILCM) size, hematocrit, blood glucose, total CO2, and decreased blood sodium and chloride concentrations. Linear relationships between ILCM size and select blood parameters support the conclusion that 6PPD-quinone toxicity is an outcome of osmorespiratory challenges imposed by gill impairment.

2.
ACS Environ Au ; 4(2): 126, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38525019

ABSTRACT

[This corrects the article DOI: 10.1021/acsenvironau.3c00023.].

3.
Environ Sci Technol ; 57(49): 20813-20821, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38032317

ABSTRACT

The photochemical degradation pathways of 6PPD-quinone (6PPDQ, 6PPD-Q), a toxic transformation product of the tire antiozonant 6PPD, were determined under simulated sunlight conditions typical of high-latitude surface waters. Direct photochemical degradation resulted in 6PPDQ half-lives ranging from 17.5 h at 20 °C to no observable degradation over 48 h at 4 °C. Sensitization of excited triplet-state pathways using Cs+ and Ar purging demonstrated that 6PPDQ does not decompose significantly from a triplet state relative to a singlet state. However, assessment of processes involving reactive oxygen species (ROS) quenchers and sensitizers indicated that singlet oxygen and hydroxyl radical do significantly contribute to the degradation of 6PPDQ. Investigation of these processes in natural lake waters indicated no difference in attenuation rates for direct photochemical processes at 20 °C. This suggests that direct photochemical degradation will dominate in warm waters, while indirect photochemical pathways will dominate in cold waters, involving ROS mediated by chromophoric dissolved organic matter (CDOM). Overall, the aquatic photodegradation rate of 6PPDQ will be strongly influenced by the compounding effects of environmental factors such as light screening and temperature on both direct and indirect photochemical processes. Transformation products were identified via UHPLC-Orbitrap mass spectrometry, revealing four major processes: (1) oxidation and cleavage of the quinone ring in the presence of ROS, (2) dealkylation, (3) rearrangement, and (4) deamination. These data indicate that 6PPDQ can photodegrade in cool, sunlit waters under the appropriate conditions: t1/2 = 17.4 h tono observable decrease (direct); t1/2 = 5.2-11.2 h (indirect, CDOM).


Subject(s)
Benzoquinones , Dissolved Organic Matter , Lakes , Phenylenediamines , Photolysis , Reactive Oxygen Species , Water Pollutants, Chemical , Benzoquinones/chemistry , Benzoquinones/radiation effects , Dissolved Organic Matter/chemistry , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/radiation effects , Phenylenediamines/chemistry , Phenylenediamines/radiation effects , Lakes/analysis , Lakes/chemistry
4.
Environ Sci Technol ; 56(4): 2421-2431, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35099932

ABSTRACT

Tire road wear particles (TRWPs) are one of the largest sources of microplastics to the urban environment with recent concerns as they also provide a pathway for additive chemicals to leach into the environment. Stormwater is a major source of TRWPs and associated additives to urban surface water, with additives including the antioxidant derivative N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) demonstrating links to aquatic toxicity at environmentally relevant concentrations. The present study used complementary analysis methods to quantify both TRWPs and a suite of known tire additive chemicals (including 6PPD-quinone) to an urban tributary in Australia during severe storm events. Concentrations of additives increased more than 40 times during storms, with a maximum concentration of 2760 ng/L for ∑15additives, 88 ng/L for 6PPD-quinone, and a similar profile observed in each storm. TRWPs were detected during storm peaks with a maximum concentration between 6.4 and 18 mg/L, and concentrations of TRWPs and all additives were highly correlated. Contaminant mass loads to this catchment were estimated as up to 100 g/storm for ∑15additives, 3 g/storm for 6PPD-quinone, and between 252 and 730 kg of TRWPs/storm. While 6PPD-quinone concentrations in this catchment were lower than previous studies, elevated concentrations post storm suggest prolonged aquatic exposure.


Subject(s)
Plastics , Water , Australia , Environmental Monitoring , Quinones
5.
Environ Sci Technol Lett ; 8(12): 1051-1056, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-38433861

ABSTRACT

The oxidative transformation product of a common tire preservative, identified as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), has recently been found to contribute to "urban runoff mortality syndrome" in Coho salmon at nanogram per liter levels. Given the number of fish-bearing streams with multiple stormwater inputs, large-scale campaigns to identify 6-PPDQ sources and evaluate mitigation strategies will require sensitive, high-throughput analytical methods. We report the development and optimization of a direct sampling tandem mass spectrometry method for semiquantitative 6-PPDQ determinations using a thin polydimethylsiloxane membrane immersion probe. The method requires no sample cleanup steps or chromatographic separations, even in complex, heterogeneous samples. Quantitation is achieved by the method of standard additions, with a detection limit of 8 ng/L and a duty cycle of 15 min/sample. High-throughput screening provides semiquantitative concentrations with similar sensitivity and a full analytical duty cycle of 2.5 min/sample. Preliminary data and performance metrics are reported for 6-PPDQ present in representative environmental and stormwater samples. The method is readily adapted for real-time process monitoring, demonstrated by following the dissolution of 6-PPDQ from tire fragments and subsequent removal in response to added sorbents.

SELECTION OF CITATIONS
SEARCH DETAIL
...