Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(20): 14161-14169, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38686290

ABSTRACT

Paper-based materials with precisely designed wettabilities show great potential for fluid transport control, separation, and sensing. To tune the wettability of paper, paper sheets are usually modified after the paper manufacturing process. This limits the complexity of the local wettability design. We combined the wettability design of the individual fibres with subsequent paper sheet fabrication through either fibre deposition or fibre printing. Using silica-based cellulose fibre functionalization, the wettability of the paper sheets, containing only one specific fibre type, could be gradually tuned from highly hydrophilic to highly hydrophobic, resulting in water exclusion. The development of a silica-functionalized fibre library containing mesoporous or dense silica coatings, as well as silica with varying precursor compositions, further enabled the variation of the paper wettability and fluid flow. By combining this fibre library with the paper fabrication process by (i) fibre deposition or (ii) fibre printing, the paper wettability architecture and thus the local fibre composition were adjusted without any further processing steps. This enabled the fabrication of papers with wettability integration, such as a wettability pattern or a Janus paper design, containing wettability gradients along the paper sheet cross section. This asymmetric wettability along all three spatial dimensions enabled side-selective oil-water separation.

2.
Nanoscale Adv ; 5(22): 6123-6134, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37941961

ABSTRACT

The wettabilities of nanoscale porous surfaces play important roles in the context of molecular and fluid transport or oil-water separation. The wettability pattern along a nanopore strongly influences fluid distribution throughout the membrane. Mesoporous silica thin films with gradually adjusted wettabilities were fabricated via cocondensation. With consecutive mesoporous layer depositions, double-layer mesoporous silica films with asymmetric or so-called Janus wettability patterns were generated. The effects of these wetting gradients on mass transport, water imbibition, and water vapor condensation were investigated with ellipsometry, cyclic voltammetry (CV), drop friction force instrument (DoFFIs), fluorescence microscopy and interferometry. By increasing the film thickness of the hydrophobic mesoporous silica top layer deposited on a hydrophilic mesoporous silica layer up to 205 nm, molecular transport through both the layers was prevented. However, water was observed to condense onto the bottom layer, and transport occurred for thinner top layers.

3.
Anal Chem ; 93(13): 5394-5402, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33724794

ABSTRACT

Bioinspired solid-state nanopores and nanochannels have attracted interest in the last two decades, as they are envisioned to advance future sensing, energy conversion, and separation concepts. Although much effort has been made regarding functionalization of these materials, multifunctionality and accurate positioning of functionalities with nanoscale precision still remain challenging. However, this precision is necessary to meet transport performance and complexity of natural pores in living systems, which are often based on nonequilibrium states and compartmentalization. In this work, a nanolocal functionalization and simultaneous localized sensing strategy inside a filtering mesoporous film using precisely placed plasmonic metal nanoparticles inside mesoporous films with pore accessibility control is demonstrated. A single layer of gold nanoparticles is incorporated into mesoporous thin films with precise spatial control along the nanoscale layer thickness. The local surface plasmon resonance is applied to induce a photopolymerization leading to a nanoscopic polymer shell around the particles and thus nanolocal polymer placement inside the mesoporous material. As near-field modes are sensitive to the dielectric properties of their surrounding, the in situ sensing capability is demonstrated using UV-vis spectroscopy. It is demonstrated that the sensing sensitivity only slightly decreases upon functionalization. The presented nanolocal placement of responsive functional polymers into nanopores offers a simultaneous filtering and nanoscopic readout function. Such a nanoscale local control is envisioned to have a strong impact onto the development of new transport and sensor concepts, especially as the system can be developed into higher complexity using different metal nanoparticles and additional design of mesoporous film filtering properties.

4.
Nanoscale ; 12(47): 24228-24236, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33291122

ABSTRACT

Wettability-defined liquid infiltration into porous materials in nature and several industrial applications is of fundamental interest. Direct observation of wetting-controlled imbibition in mesopores is anticipated to deliver important insights into the interplay between nanoconfined liquid movement and nanoscale wettability. We present a systematic study of water imbibition into mesoporous silica thin films with wetting properties precisely adjusted through chemical functionalization. We observe the liquid infiltration, resulting in an imbibition ring around the water droplet, by top-view imaging using a camera with collimated coaxial illumination. With decreasing hydrophilicity, the maximum imbibition area around the droplet decreases, accompanied by a simultaneous change in the imbibition kinetics and imbibition mechanism. Initially, the imbibition kinetics follow a modified Lucas-Washburn law that considers a strong influence of evaporation. However, with increasing imbibition time after reaching constant imbibition ring dimensions, the imbibition area starts to increase again, causing a deviation from the applied model. This observation is ascribed to water-mediated surface activation at the imbibition front, leading to a slightly increased wettability, which is also confirmed by water adsorption measurements. Furthermore, recently described spontaneous condensation-evaporation imbalances that cause oscillations of the imbibition front could be verified and were studied with regard to changing wetting properties. By increasing the contact angle of the material and therefore the partial pressure needed for capillary condensation, the amplitude of the imbibition front oscillations decreases. These results provide insights into the wettability-defined complex movement of water in mesoporous structures, which has practical implications, e.g., for nano/microfluidic devices and water purification or harvesting.

5.
RSC Adv ; 9(41): 23570-23578, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-35530608

ABSTRACT

This study presents gravure printing as a new strategy for rapid printing of ceramic mesoporous films and highlights its advantages over conventional mesoporous film preparation using evaporation induced self-assembly together with dip-coating. By varying the printing process parameters, the mesoporous coating thicknesses can be adjusted between 20 and 200 nm while maintaining a very high film homogeneity allowing the printing of ultrathin mesoporous films. Step gradients in film composition are accessible by consecutively printing two different "inks". Thereby, gravure printing is a much faster process than mesoporous single- and multilayer preparation using conventional dip-coating because lower amounts of solution are transferred and dissolution of previously deposited layers is avoided. The effect of printing process parameters on resulting film characteristics as well as the resulting mesoporous film's ionic accessibility is systematically investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...