Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 435(7039): 181-4, 2005 May 12.
Article in English | MEDLINE | ID: mdl-15889085

ABSTRACT

The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

2.
Science ; 267(5202): 1302-7, 1995 Mar 03.
Article in English | MEDLINE | ID: mdl-7871427

ABSTRACT

Hubble Space Telescope far-ultraviolet images of Jupiter during the Shoemaker-Levy 9 impacts show the impact regions darkening over the 2 to 3 hours after the impact, becoming darker and more extended than at longer wavelengths, which indicates that ultraviolet-absorbing gases or aerosols are more extended, more absorbing, and at higher altitudes than the absorbers of visible light. Transient auroral emissions were observed near the magnetic conjugate point of the K impact site just after that impact. The global auroral activity was fainter than average during the impacts, and a variable auroral emission feature was observed inside the southern auroral oval preceding the impacts of fragments Q1 and Q2.


Subject(s)
Extraterrestrial Environment , Jupiter , Solar System , Atmosphere
3.
Science ; 246(4929): 506-9, 1989 Oct 27.
Article in English | MEDLINE | ID: mdl-17788700

ABSTRACT

Near-infrared images of the Venus night side show bright contrast features that move from east to west, in the direction of the cloud-top atmospheric superrotation. Recently acquired images of the Venus night side along with earlier spectroscopic observations allow identification of the mechanisms that produce these features, their level of formation, and the wind velocities at those levels. The features are detectable only at wavelengths near 1.74 and 2.3 micrometers, in narrow atmospheric windows between the CO(2) and H(2)O bands. The brightest features have brightness temperatures near 480 Kelvin, whereas the darkest features are more than 50 Kelvin cooler. Several factors suggest that this radiation is emitted by hot gases at altitudes below 35 kilometers in the Venus atmosphere. The feature contrasts are produced as this thermal radiation passes through a higher, cooler, atmospheric layer that has horizontal variations in transparency. The 6.5-day east-west rotation period of the features indicates that equatorial wind speeds are near 70 meters per second in this upper layer. Similar wind speeds have been measured by entry probes and balloons at altitudes between 50 and 55 kilometers in the middle cloud layer. The bright features indicate that there are partial clearings in this cloud deck. The presence of these clearings could decrease the efficiency of the atmospheric greenhouse that maintains the high surface temperatures on Venus.

SELECTION OF CITATIONS
SEARCH DETAIL
...