Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav ; 12(2): e02077, 2022 02.
Article in English | MEDLINE | ID: mdl-35076166

ABSTRACT

BACKGROUND: Passive measures collected using smartphones have been suggested to represent efficient proxies for depression severity, but the performance of such measures across diagnoses has not been studied. METHODS: We enrolled a cohort of 45 individuals (11 with major depressive disorder, 11 with bipolar disorder, 11 with schizophrenia or schizoaffective disorder, and 12 individuals with no axis I psychiatric disorder). During the 8-week study period, participants were evaluated with a rater-administered Montgomery-Åsberg Depression Rating Scale (MADRS) biweekly, completed self-report PHQ-8 measures weekly on their smartphone, and consented to collection of smartphone-based GPS and accelerometer data in order to learn about their behaviors. We utilized linear mixed models to predict depression severity on the basis of phone-based PHQ-8 and passive measures. RESULTS: Among the 45 individuals, 38 (84%) completed the 8-week study. The average root-mean-squared error (RMSE) in predicting the MADRS score (scale 0-60) was 4.72 using passive data alone, 4.27 using self-report measures alone, and 4.30 using both. CONCLUSIONS: While passive measures did not improve MADRS score prediction in our cross-disorder study, they may capture behavioral phenotypes that cannot be measured objectively, granularly, or over long-term via self-report.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Bipolar Disorder/diagnosis , Depression/diagnosis , Depressive Disorder, Major/diagnosis , Humans , Psychiatric Status Rating Scales , Self Report , Smartphone
2.
World Neurosurg ; 109: 476-486.e1, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28986230

ABSTRACT

OBJECTIVE: Accurate measurement of surgical outcomes is highly desirable to optimize surgical decision-making. An important element of surgical decision making is identification of the patient cohort that will benefit from surgery before the intervention. Machine learning (ML) enables computers to learn from previous data to make accurate predictions on new data. In this systematic review, we evaluate the potential of ML for neurosurgical outcome prediction. METHODS: A systematic search in the PubMed and Embase databases was performed to identify all potential relevant studies up to January 1, 2017. RESULTS: Thirty studies were identified that evaluated ML algorithms used as prediction models for survival, recurrence, symptom improvement, and adverse events in patients undergoing surgery for epilepsy, brain tumor, spinal lesions, neurovascular disease, movement disorders, traumatic brain injury, and hydrocephalus. Depending on the specific prediction task evaluated and the type of input features included, ML models predicted outcomes after neurosurgery with a median accuracy and area under the receiver operating curve of 94.5% and 0.83, respectively. Compared with logistic regression, ML models performed significantly better and showed a median absolute improvement in accuracy and area under the receiver operating curve of 15% and 0.06, respectively. Some studies also demonstrated a better performance in ML models compared with established prognostic indices and clinical experts. CONCLUSIONS: In the research setting, ML has been studied extensively, demonstrating an excellent performance in outcome prediction for a wide range of neurosurgical conditions. However, future studies should investigate how ML can be implemented as a practical tool supporting neurosurgical care.


Subject(s)
Machine Learning , Nervous System Diseases/surgery , Neurosurgical Procedures , Outcome Assessment, Health Care , Computer Simulation , Decision Support Techniques , Humans , Prognosis
3.
Sci Rep ; 5: 17581, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26631604

ABSTRACT

Whenever possible, the efficacy of a new treatment is investigated by randomly assigning some individuals to a treatment and others to control, and comparing the outcomes between the two groups. Often, when the treatment aims to slow an infectious disease, clusters of individuals are assigned to each treatment arm. The structure of interactions within and between clusters can reduce the power of the trial, i.e. the probability of correctly detecting a real treatment effect. We investigate the relationships among power, within-cluster structure, cross-contamination via between-cluster mixing, and infectivity by simulating an infectious process on a collection of clusters. We demonstrate that compared to simulation-based methods, current formula-based power calculations may be conservative for low levels of between-cluster mixing, but failing to account for moderate or high amounts can result in severely underpowered studies. Power also depends on within-cluster network structure for certain kinds of infectious spreading. Infections that spread opportunistically through highly connected individuals have unpredictable infectious breakouts, making it harder to distinguish between random variation and real treatment effects. Our approach can be used before conducting a trial to assess power using network information, and we demonstrate how empirical data can inform the extent of between-cluster mixing.


Subject(s)
Cluster Analysis , Randomized Controlled Trials as Topic/statistics & numerical data , Algorithms , Cell Phone , Communicable Diseases , Humans , Probability , Social Support
SELECTION OF CITATIONS
SEARCH DETAIL
...