Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 46(6): 1546-54, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20178867

ABSTRACT

While the spatial activity of osteoblasts has been associated with modeling of bones during development, few studies have examined if variation in the spatial activity of osteoclasts also contributes to the morphogenesis of skeletal tissues. We examined this question by histomorphometric analysis and reconstructing the three-dimensional spatial distribution of osteoclasts in the femora of three inbred strains of male mice (A/J, C57BL/6J [B6], and C3H/HeJ [C3H]) that have differing skeletal, structural, and material properties. Our data show that total osteoclast surface area and osteoclast numbers are related to the overall bone density, but not related to the development of bone diameter or overall cortical area. The analysis of the spatial distribution of the osteoclasts showed that the asymmetrical mid-diaphyseal distribution of osteoclasts in A/J and B6 compared to the more uniform distribution of these cells around the circumference in the C3H mice was consistent with the more ellipsoid shape of A/J and B6 femora compared to the more circular mid-diaphyseal shape of the femora in the C3H mice. The statistically 2- to 3-fold fewer cells on the periosteal surface in the C3H compared to either the B6 or A/J mice is also consistent with the greater cortical thickness that is seen for the C3H mice compared to either B6 or A/J strains. In vitro studies of osteoclastogenesis and the expression of numerous phenotypic properties of osteoclasts prepared from the three strains of mice showed that A/J and B6 mice developed statistically greater numbers of tartrate resistant acid phosphatase (TRAP) positive cells and expressed statistically higher levels of multiple mRNAs that are unique to differentiated osteoclasts than those isolated from the C3H strain. In summary, the 3D reconstructions and histomorphometric analysis suggest that genetic differences lead to spatial variation in the distribution of osteoclasts. These variations in spatial distribution of osteoclasts in turn contribute in part to the development of the structural variations of the femora that are seen in the three strains of mice. In vitro studies suggest that intrinsic genetic variation in osteoclastogenesis and their phenotypic expression may contribute to the differences in their functional activities that give rise to the unique spatial distributions of these cells in bones.


Subject(s)
Femur/cytology , Femur/metabolism , Genetic Variation/genetics , Osteoclasts/metabolism , Acid Phosphatase/genetics , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Femur/growth & development , In Vitro Techniques , Isoenzymes/genetics , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Osteoclasts/cytology , Reverse Transcriptase Polymerase Chain Reaction , Tartrate-Resistant Acid Phosphatase
SELECTION OF CITATIONS
SEARCH DETAIL
...