Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect ; 82(5): 162-169, 2021 05.
Article in English | MEDLINE | ID: mdl-33766553

ABSTRACT

BACKGROUND: Antibody waning after SARS-CoV-2 infection may result in reduction in long-term immunity following natural infection and vaccination, and is therefore a major public health issue. We undertook prospective serosurveillance in a large cohort of healthy adults from the start of the epidemic in England. METHODS: Clinical and non-clinical healthcare workers were recruited across three English regions and tested monthly from March to November 2020 for SARS-CoV-2 spike (S) protein and nucleoprotein (N) antibodies using five different immunoassays. In positive individuals, antibody responses and long-term trends were modelled using mixed effects regression. FINDINGS: In total, 2246 individuals attended 12,247 visits and 264 were seropositive in ≥ 2 assays. Most seroconversions occurred between March and April 2020. The assays showed > 85% agreement for ever-positivity, although this changed markedly over time. Antibodies were detected earlier with Abbott (N) but declined rapidly thereafter. With the EuroImmun (S) and receptor-binding domain (RBD) assays, responses increased for 4 weeks then fell until week 12-16 before stabilising. For Roche (N), responses increased until 8 weeks, stabilised, then declined, but most remained above the positive threshold. For Roche (S), responses continued to climb over the full 24 weeks, with no sero-reversions. Predicted proportions sero-reverting after 52 weeks were 100% for Abbott, 59% (95% credible interval 50-68%) Euroimmun, 41% (30-52%) RBD, 10% (8-14%) Roche (N) < 2% Roche (S). INTERPRETATION: Trends in SARS-CoV-2 antibodies following infection are highly dependent on the assay used. Ongoing serosurveillance using multiple assays is critical for monitoring the course and long-term progression of SARS-CoV-2 antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Antibody Formation , England , Health Personnel , Humans , Prospective Studies , Public Health
2.
Clin Vaccine Immunol ; 17(1): 154-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906895

ABSTRACT

The kinetics of antibody persistence following the administration of a combination meningococcal serogroup C and Haemophilus influenzae type b (Hib) conjugate vaccine (Menitorix) in the second year of life in children primed with two doses of one of three monovalent meningococcal serogroup C (MCC) vaccines was investigated. The study subjects were administered either Menitorix at 12 to 15 months of age, followed by the seven-valent pneumococcal conjugate vaccine (PCV7) and the measles, mumps, and rubella vaccine 4 to 6 weeks later, or all three vaccines concomitantly at 12 to 15 months of age. Blood samples were collected before and 1, 2, 12, and 24 months after the boosting. Sera were analyzed for meningococcal serogroup C serum bactericidal antibody (SBA) and IgG as well as Hib-polyribosylribitol phosphate (PRP)-specific IgG. The antibody persistence data from this study were compared to those of a prior study of Southern et al. (Clin. Vaccine Immunol. 14:1328-1333, 2007) in which children were given three primary doses of a vaccine containing both the MCC and the Hib vaccines but were boosted only with a Hib conjugate vaccine. The magnitude of the meningococcal SBA geometric mean titer was higher for those subjects primed with the MCC vaccine conjugated to tetanus toxoid (NeisVac-C) than for those primed with one of two MCC vaccines conjugated to CRM(197) (Menjugate or Meningitec) up to 1 year following boosting. Two years after boosting, the percentages of subjects with putatively protective SBA titers of > or =8 for children primed with NeisVac-C, Menjugate, and Meningitec were 43%, 22%, and 23%, respectively. Additional booster doses of the MCC vaccine may be required in the future to maintain good antibody levels; however, there is no immediate need for a booster during adolescence, as mathematical modeling has shown that persisting herd immunity is likely to control disease for a number of years.


Subject(s)
Antibodies, Bacterial/blood , Haemophilus Vaccines/immunology , Haemophilus influenzae type b/immunology , Immunoglobulin G/blood , Meningococcal Vaccines/immunology , Haemophilus Vaccines/administration & dosage , Heptavalent Pneumococcal Conjugate Vaccine , Humans , Immunization, Secondary/methods , Infant , Measles Vaccine/administration & dosage , Measles Vaccine/immunology , Meningococcal Vaccines/administration & dosage , Mumps Vaccine/administration & dosage , Mumps Vaccine/immunology , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/immunology , Rubella Vaccine/administration & dosage , Rubella Vaccine/immunology , Time Factors , United Kingdom , Vaccination/methods , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...