Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Microbe Interact ; 29(3): 156-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26900786

ABSTRACT

Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like 'sponges' that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5' to 3' degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host's RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race.


Subject(s)
Gene Expression Regulation, Viral/physiology , Plant Diseases/virology , Plant Viruses/metabolism , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Plant Viruses/genetics , RNA, Untranslated/genetics , RNA, Viral/genetics
2.
Virology ; 397(1): 187-98, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19932911

ABSTRACT

Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins G(N) and G(C), nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate.


Subject(s)
Rift Valley Fever/immunology , Rift Valley fever virus/immunology , Vaccines, Virosome/immunology , Virus Replication , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cytokines/metabolism , Female , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Moloney murine leukemia virus/genetics , Rats , Rats, Inbred WF , Rift Valley Fever/prevention & control , Rift Valley fever virus/physiology , Survival Analysis , T-Lymphocytes/immunology , Vaccines, Virosome/genetics , Viral Proteins/genetics , Virosomes/ultrastructure
3.
J Virol ; 83(19): 10176-86, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19625394

ABSTRACT

To explore mechanisms of entry for Ebola virus (EBOV) glycoprotein (GP) pseudotyped virions, we used comparative gene analysis to identify genes whose expression correlated with viral transduction. Candidate genes were identified by using EBOV GP pseudotyped virions to transduce human tumor cell lines that had previously been characterized by cDNA microarray. Transduction profiles for each of these cell lines were generated, and a significant positive correlation was observed between RhoC expression and permissivity for EBOV vector transduction. This correlation was not specific for EBOV vector alone as RhoC also correlated highly with transduction of vesicular stomatitis virus GP (VSVG) pseudotyped vector. Levels of RhoC protein in EBOV and VSV permissive and nonpermissive cells were consistent with the cDNA gene array findings. Additionally, vector transduction was elevated in cells that expressed high levels of endogenous RhoC but not RhoA. RhoB and RhoC overexpression significantly increased EBOV GP and VSVG pseudotyped vector transduction but had minimal effect on human immunodeficiency virus (HIV) GP pseudotyped HIV or adeno-associated virus 2 vector entry, indicating that not all virus uptake was enhanced by expression of these molecules. RhoB and RhoC overexpression also significantly enhanced VSV infection. Similarly, overexpression of RhoC led to a significant increase in fusion of EBOV virus-like particles. Finally, ectopic expression of RhoC resulted in increased nonspecific endocytosis of fluorescent dextran and in formation of increased actin stress fibers compared to RhoA-transfected cells, suggesting that RhoC is enhancing macropinocytosis. In total, our studies implicate RhoB and RhoC in enhanced productive entry of some pseudovirions and suggest the involvement of actin-mediated macropinocytosis as a mechanism of uptake of EBOV GP and VSVG pseudotyped viral particles.


Subject(s)
Ebolavirus/enzymology , Genetic Vectors , Vesiculovirus/metabolism , rho GTP-Binding Proteins/metabolism , Animals , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Clostridioides difficile , Humans , Microscopy, Fluorescence/methods , Models, Biological , Plasmids/metabolism , Vero Cells
4.
Methods Mol Biol ; 451: 99-112, 2008.
Article in English | MEDLINE | ID: mdl-18370250

ABSTRACT

Positive-strand RNA viruses often use noncanonical strategies to usurp the host translational machinery for their own benefit. These strategies have been analyzed using transient expression assays in the absence of replication, with reporter genes replacing viral genes. A sensitive and convenient reporter assay is the dual luciferase system using Renilla (Renilla reniformis) and firefly (Photinus pyralis) reporter genes. Use of recombinant viral constructs containing the reporter luciferase gene allows us to discern whether a particular RNA sequence or secondary structure elicits an effect on initiation of translation or recoding. This chapter describes a standard luciferase protocol that can be molded to fit any viral sequence, in order to detect cis-acting regulatory elements in viral RNA.


Subject(s)
Protein Biosynthesis , RNA, Viral/genetics , Animals , Electroporation/methods , Fireflies , Genes, Reporter , Indicators and Reagents , Luciferases/genetics , Protoplasts/physiology , Renilla , Transfection/methods
5.
Blood ; 101(5): 1798-800, 2003 Mar 01.
Article in English | MEDLINE | ID: mdl-12406870

ABSTRACT

Congenital blood disorders are common and yet clinically challenging globin disorders. Gene therapy continues to serve as a potential therapeutic method to treat these disorders. While tremendous advances have been made in vivo, gene delivery protocols and vector prototypes still require optimization. Alternative cis-acting promoter elements derived from VL30 retroelements have been effective in expressing tissue-specific transgene expression in vivo in nonerythroid cells. VL30 promoter elements were isolated from ELM-I-1 erythroid progenitor cells upon erythropoietin (epo) treatment. These promoters were inserted into a VL30-derived expression vector and reintroduced into the ELM-I-1 cells. beta-Galactosidase reporter gene activity from the ELM 5 clone, a BVL-1-like VL30 promoter, was capable of expressing sustained levels of the transgene expression over a 16-week assay period. These findings delineate the potential utility of these retroelement promoters as transcriptionally active, erythroid-specific, long terminal repeat (LTR) components for current globin vector constructs.


Subject(s)
Erythroid Precursor Cells/metabolism , Gene Expression Regulation , Genetic Vectors/genetics , Promoter Regions, Genetic/physiology , Retroelements/genetics , Animals , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/drug effects , Erythropoietin/pharmacology , Gene Expression Regulation/drug effects , Genes, Reporter , Lac Operon , Leukemia, Erythroblastic, Acute/pathology , Mice , Organ Specificity , Promoter Regions, Genetic/drug effects , Recombinant Fusion Proteins/biosynthesis , Transfection , Tumor Cells, Cultured , beta-Galactosidase/biosynthesis
6.
Blood Cells Mol Dis ; 28(2): 275-82, 2002.
Article in English | MEDLINE | ID: mdl-12064922

ABSTRACT

Virus-like 30S (VL30) elements are endogenous retro-elements of the mouse retrotransposon family. These elements are transcriptionally responsive in a temporal and tissue-specific manner due to the U3 promoter region of the elements' long terminal repeat (LTR). We have analyzed VL30 promoters from erythroid progenitor cell lines (MEL 585S and ELM-I-1) that contrasted in their response to erythropoietin (epo). Through RT-PCR-generated cDNAs, VL30 promoters were identified and showed homology to the third and fourth U3 subgroups, with GATA-1, Jak2/STAT5, and B10 RRE sites. One clone (ELM5) showed 97% homology to BVL-1, a putative epo-responsive VL30 element. In addition, a novel U3 promoter (MEL/ELM CONSTIT) showed complete sequence homology between both cell lines. Ribonuclease protection confirmed that epo-induced VL30 promoters were activated in ELM-I-1 cells, whereas the conserved VL30 MEL-ELM CONSTIT VL30 promoter showed no enhanced expression in the epo-unresponsive MEL cells. Identification of these U3 promoters suggests that VL30s are conserved and can be transcriptionally activated in an epo-specific manner.


Subject(s)
Endogenous Retroviruses/genetics , Erythroid Precursor Cells , Erythropoietin/pharmacology , Promoter Regions, Genetic/genetics , Animals , Base Sequence , Conserved Sequence , Mice , Molecular Sequence Data , Promoter Regions, Genetic/drug effects , Retroelements , Sequence Homology, Nucleic Acid , Transcriptional Activation/drug effects , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...