Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(45): e2312077120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37871159

ABSTRACT

Vertebrate groups have evolved strikingly diverse color patterns. However, it remains unknown to what extent the diversification of such patterns has been shaped by the proximate, developmental mechanisms that regulate their formation. While these developmental mechanisms have long been inaccessible empirically, here we take advantage of recent insights into rodent pattern formation to investigate the role of development in shaping pattern diversification across rodents. Based on a broad survey of museum specimens, we first establish that various rodents have independently evolved diverse patterns consisting of longitudinal stripes, varying across species in number, color, and relative positioning. We then interrogate this diversity using a simple model that incorporates recent molecular and developmental insights into stripe formation in African striped mice. Our results suggest that, on the one hand, development has facilitated pattern diversification: The diversity of patterns seen across species can be generated by a single developmental process, and small changes in this process suffice to recapitulate observed evolutionary changes in pattern organization. On the other hand, development has constrained diversification: Constraints on stripe positioning limit the scope of evolvable patterns, and although pattern organization appears at first glance phylogenetically unconstrained, development turns out to impose a cryptic constraint. Altogether, this work reveals that pattern diversification in rodents can in part be explained by the underlying development and illustrates how pattern formation models can be leveraged to interpret pattern evolution.


Subject(s)
Biological Evolution , Rodentia , Mice , Animals , Phylogeny
2.
Proc Natl Acad Sci U S A ; 119(18): e2116066119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35486699

ABSTRACT

Task allocation is a central feature of collective organization. Living collective systems, such as multicellular organisms or social insect colonies, have evolved diverse ways to allocate individuals to different tasks, ranging from rigid, inflexible task allocation that is not adjusted to changing circumstances to more fluid, flexible task allocation that is rapidly adjusted to the external environment. While the mechanisms underlying task allocation have been intensely studied, it remains poorly understood whether differences in the flexibility of task allocation can be viewed as adaptive responses to different ecological contexts­for example, different degrees of temporal variability. Motivated by this question, we develop an analytically tractable mathematical framework to explore the evolution of task allocation in dynamic environments. We find that collective flexibility is not necessarily always adaptive, and fails to evolve in environments that change too slowly (relative to how long tasks can be left unattended) or too quickly (relative to how rapidly task allocation can be adjusted). We further employ the framework to investigate how environmental variability impacts the internal organization of task allocation, which allows us to propose adaptive explanations for some puzzling empirical observations, such as seemingly unnecessary task switching under constant environmental conditions, apparent task specialization without efficiency benefits, and high levels of individual inactivity. Altogether, this work provides a general framework for probing the evolved diversity of task allocation strategies in nature and reinforces the idea that considering a system's ecology is crucial to explaining its collective organization.


Subject(s)
Behavior, Animal , Biological Evolution , Social Behavior , Animals , Ants , Ecology , Humans
3.
Elife ; 92020 11 03.
Article in English | MEDLINE | ID: mdl-33140720

ABSTRACT

A mathematical model shows how the shape of early multicellular organisms may have helped cells evolve specialized roles.


Subject(s)
Biological Evolution , Models, Biological , Reproduction
4.
Nat Ecol Evol ; 3(8): 1197-1205, 2019 08.
Article in English | MEDLINE | ID: mdl-31285576

ABSTRACT

The evolution of multicellularity has given rise to a remarkable diversity of multicellular life cycles and life histories. Whereas some multicellular organisms are long-lived, grow through cell division, and repeatedly release single-celled propagules (for example, animals), others are short-lived, form by aggregation, and propagate only once, by generating large numbers of solitary cells (for example, cellular slime moulds). There are no systematic studies that explore how diverse multicellular life cycles can come about. Here, we focus on the origin of multicellularity and develop a mechanistic model to examine the primitive life cycles that emerge from a unicellular ancestor when an ancestral gene is co-opted for cell adhesion. Diverse life cycles readily emerge, depending on ecological conditions, group-forming mechanism, and ancestral constraints. Among these life cycles, we recapitulate both extremes of long-lived groups that propagate continuously and short-lived groups that propagate only once, with the latter type of life cycle being particularly favoured when groups can form by aggregation. Our results show how diverse life cycles and life histories can easily emerge at the origin of multicellularity, shaped by ancestral constraints and ecological conditions. Beyond multicellularity, this finding has similar implications for other major transitions, such as the evolution of sociality.


Subject(s)
Biological Evolution , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...