Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(34): e2220269120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579172

ABSTRACT

The vascular endothelium from individual organs is functionally specialized, and it displays a unique set of accessible molecular targets. These serve as endothelial cell receptors to affinity ligands. To date, all identified vascular receptors have been proteins. Here, we show that an endothelial lung-homing peptide (CGSPGWVRC) interacts with C16-ceramide, a bioactive sphingolipid that mediates several biological functions. Upon binding to cell surfaces, CGSPGWVRC triggers ceramide-rich platform formation, activates acid sphingomyelinase and ceramide production, without the associated downstream apoptotic signaling. We also show that the lung selectivity of CGSPGWVRC homing peptide is dependent on ceramide production in vivo. Finally, we demonstrate two potential applications for this lipid vascular targeting system: i) as a bioinorganic hydrogel for pulmonary imaging and ii) as a ligand-directed lung immunization tool against COVID-19. Thus, C16-ceramide is a unique example of a lipid-based receptor system in the lung vascular endothelium targeted in vivo by circulating ligands such as CGSPGWVRC.


Subject(s)
COVID-19 , Humans , Ligands , COVID-19/metabolism , Ceramides/metabolism , Lung/metabolism , Endothelium, Vascular/metabolism , Receptors, Cell Surface/metabolism , Carrier Proteins/metabolism , Sphingomyelin Phosphodiesterase/metabolism
2.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37227783

ABSTRACT

While the development of different vaccines slowed the dissemination of SARS-CoV-2, the occurrence of breakthrough infections has continued to fuel the COVID-19 pandemic. To secure at least partial protection in the majority of the population through 1 dose of a COVID-19 vaccine, delayed administration of boosters has been implemented in many countries. However, waning immunity and emergence of new variants of SARS-CoV-2 suggest that such measures may induce breakthrough infections due to intermittent lapses in protection. Optimizing vaccine dosing schedules to ensure prolonged continuity in protection could thus help control the pandemic. We developed a mechanistic model of immune response to vaccines as an in silico tool for dosing schedule optimization. The model was calibrated with clinical data sets of acquired immunity to COVID-19 mRNA vaccines in healthy and immunocompromised participants and showed robust validation by accurately predicting neutralizing antibody kinetics in response to multiple doses of COVID-19 mRNA vaccines. Importantly, by estimating population vulnerability to breakthrough infections, we predicted tailored vaccination dosing schedules to minimize breakthrough infections, especially for immunocompromised individuals. We identified that the optimal vaccination schedules vary from CDC-recommended dosing, suggesting that the model is a valuable tool to optimize vaccine efficacy outcomes during future outbreaks.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Breakthrough Infections , mRNA Vaccines
3.
medRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36415468

ABSTRACT

While the development of different vaccines has slowed the dissemination of SARS-CoV-2, the occurrence of breakthrough infections continues to fuel the pandemic. As a strategy to secure at least partial protection, with a single dose of a given COVID-19 vaccine to maximum possible fraction of the population, delayed administration of subsequent doses (or boosters) has been implemented in many countries. However, waning immunity and emergence of new variants of SARS-CoV-2 suggest that such measures may jeopardize the attainment of herd immunity due to intermittent lapses in protection. Optimizing vaccine dosing schedules could thus make the difference between periodic occurrence of breakthrough infections or effective control of the pandemic. To this end, we have developed a mechanistic mathematical model of adaptive immune response to vaccines and demonstrated its applicability to COVID-19 mRNA vaccines as a proof-of-concept for future outbreaks. The model was thoroughly calibrated against multiple clinical datasets involving immune response to SARS-CoV-2 infection and mRNA vaccines in healthy and immunocompromised subjects (cancer patients undergoing therapy); the model showed robust clinical validation by accurately predicting neutralizing antibody kinetics, a correlate of vaccine-induced protection, in response to multiple doses of mRNA vaccines. Importantly, we estimated population vulnerability to breakthrough infections and predicted tailored vaccination dosing schedules to maximize protection and thus minimize breakthrough infections, based on the immune status of a sub-population. We have identified a critical waiting window for cancer patients (or, immunocompromised subjects) to allow recovery of the immune system (particularly CD4+ T-cells) for effective differentiation of B-cells to produce neutralizing antibodies and thus achieve optimal vaccine efficacy against variants of concern, especially between the first and second doses. Also, we have obtained optimized dosing schedules for subsequent doses in healthy and immunocompromised subjects, which vary from the CDC-recommended schedules, to minimize breakthrough infections. The developed modeling tool is based on generalized adaptive immune response to antigens and can thus be leveraged to guide vaccine dosing schedules during future outbreaks.

4.
Mol Biol Evol ; 39(5)2022 05 03.
Article in English | MEDLINE | ID: mdl-35511693

ABSTRACT

Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662-C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662-C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662-C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.


Subject(s)
COVID-19 , Vaccines , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
bioRxiv ; 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34676381

ABSTRACT

Targeted bacteriophage (phage) particles are potentially attractive yet inexpensive platforms for immunization. Herein, we describe targeted phage capsid display of an immunogenically relevant epitope of the SARS-CoV-2 Spike protein that is empirically conserved, likely due to the high mutational cost among all variants identified to date. This observation may herald an approach to developing vaccine candidates for broad-spectrum, towards universal, protection against multiple emergent variants of coronavirus that cause COVID-19.

6.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34234013

ABSTRACT

Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these "dual-display" phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development.


Subject(s)
Bacteriophages/genetics , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization Programs , Administration, Inhalation , Animals , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Dependovirus/genetics , Drug Storage , Female , Immunization Programs/methods , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Proof of Concept Study , Temperature
7.
Elife ; 102021 06 01.
Article in English | MEDLINE | ID: mdl-34060472

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive tumor with limited treatment options and poor prognosis. We applied the in vivo phage display technology to isolate peptides homing to the immunosuppressive cellular microenvironment of TNBC as a strategy for non-malignant target discovery. We identified a cyclic peptide (CSSTRESAC) that specifically binds to a vitamin D receptor, protein disulfide-isomerase A3 (PDIA3) expressed on the cell surface of tumor-associated macrophages (TAM), and targets breast cancer in syngeneic TNBC, non-TNBC xenograft, and transgenic mouse models. Systemic administration of CSSTRESAC to TNBC-bearing mice shifted the cytokine profile toward an antitumor immune response and delayed tumor growth. Moreover, CSSTRESAC enabled ligand-directed theranostic delivery to tumors and a mathematical model confirmed our experimental findings. Finally, in silico analysis showed PDIA3-expressing TAM in TNBC patients. This work uncovers a functional interplay between a cell surface vitamin D receptor in TAM and antitumor immune response that could be therapeutically exploited.


Subject(s)
Antineoplastic Agents/pharmacology , Oligopeptides/pharmacology , Protein Disulfide-Isomerases/metabolism , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages/drug effects , Vitamin D-Binding Protein/metabolism , Animals , Cell Line, Tumor , Enzyme Activation , Female , Gene Expression Regulation, Neoplastic , Humans , Ligands , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Protein Disulfide-Isomerases/genetics , Signal Transduction , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Vitamin D-Binding Protein/genetics , Xenograft Model Antitumor Assays
8.
Med ; 2(3): 321-342, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33870243

ABSTRACT

BACKGROUND: The extensive alveolar capillary network of the lungs is an attractive route for administration of several agents. One key functional attribute is the rapid onset of systemic action due to the absence of first-pass metabolism. METHODS: Here we applied a combinatorial approach for ligand-directed pulmonary delivery as a unique route for systemic targeting in vaccination. FINDINGS: We screened a phage display random peptide library in vivo to select, identify, and validate a ligand (CAKSMGDIVC) that specifically targets and is internalized through its receptor, α3ß1 integrin, on the surface of cells lining the lung airways and alveoli and mediates CAKSMGDIVC-displaying phage binding and systemic delivery without compromising lung homeostasis. As a proof-of-concept, we show that the pulmonary delivery of targeted CAKSMGDIVC-displaying phage particles in mice and non-human primates elicit a systemic and specific humoral response. CONCLUSIONS: This broad methodology blueprint represents a robust and versatile platform tool enabling new ligand-receptor discovery with many potential translational applications. FUNDING: Cancer Center Support Grants to the University of Texas M.D. Anderson Cancer Center (CA016672), University of New Mexico Comprehensive Cancer Center (CA118100), Rutgers Cancer Institute of New Jersey (CA072720), research awards from the Gillson Longenbaugh Foundation, and National Institutes of Health (NIH) grant no. 1R01CA226537.


Subject(s)
Bacteriophages , Lung , Animals , Bacteriophages/genetics , Carrier Proteins/metabolism , Ligands , Lung/metabolism , Mice , Primates/metabolism , United States , Vaccination
9.
bioRxiv ; 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33758865

ABSTRACT

Development of effective vaccines against Coronavirus Disease 2019 (COVID-19) is a global imperative. Rapid immunization of the world human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and many different vaccine approaches are being pursued to meet this task. Engineered filamentous bacteriophage (phage) have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the design, development, and initial evaluation of targeted phage-based vaccination approaches against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) by using dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. Towards a unique phage- and AAVP-based dual-display candidate approach, we first performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein for display on the recombinant major capsid coat protein pVIII. Targeted phage particles carrying one of these epitopes induced a strong and specific humoral response. In an initial experimental approach, when these targeted phage particles were further genetically engineered to simultaneously display a ligand peptide (CAKSMGDIVC) on the minor capsid protein pIII, which enables receptor-mediated transport of phage particles from the lung epithelium into the systemic circulation (termed "dual-display"), they enhanced a systemic and specific spike (S) protein-specific antibody response upon aerosolization into the lungs of mice. In a second line of investigation, we engineered targeted AAVP particles to deliver the entire S protein gene under the control of a constitutive cytomegalovirus (CMV) promoter, which induced tissue-specific transgene expression stimulating a systemic S protein-specific antibody response. As proof-of-concept preclinical experiments, we show that targeted phage- and AAVP-based particles serve as robust yet versatile enabling platforms for ligand-directed immunization and promptly yield COVID-19 vaccine prototypes for further translational development. SIGNIFICANCE: The ongoing COVID-19 global pandemic has accounted for over 2.5 million deaths and an unprecedented impact on the health of mankind worldwide. Over the past several months, while a few COVID-19 vaccines have received Emergency Use Authorization and are currently being administered to the entire human population, the demand for prompt global immunization has created enormous logistical challenges--including but not limited to supply, access, and distribution--that justify and reinforce the research for additional strategic alternatives. Phage are viruses that only infect bacteria and have been safely administered to humans as antibiotics for decades. As experimental proof-of-concept, we demonstrated that aerosol pulmonary vaccination with lung-targeted phage particles that display short epitopes of the S protein on the capsid as well as preclinical vaccination with targeted AAVP particles carrying the S protein gene elicit a systemic and specific immune response against SARS-CoV-2 in immunocompetent mice. Given that targeted phage- and AAVP-based viral particles are sturdy yet simple to genetically engineer, cost-effective for rapid large-scale production in clinical grade, and relatively stable at room temperature, such unique attributes might perhaps become additional tools towards COVID-19 vaccine design and development for immediate and future unmet needs.

10.
EBioMedicine ; 63: 103206, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33429173

ABSTRACT

BACKGROUND: To deeply understand the role of antibodies in the context of Trypanosoma cruzi infection, we decided to characterize A2R1, a parasite antibody selected from single-chain variable fragment (scFv) phage display libraries constructed from B cells of chronic Chagas heart disease patients. METHODS: Immunoblot, ELISA, cytometry, immunofluorescence and immunohistochemical assays were used to characterize A2R1 reactivity. To identify the antibody target, we performed an immunoprecipitation and two-dimensional electrophoresis coupled to mass spectrometry and confirmed A2R1 specific interaction by producing the antigen in different expression systems. Based on these data, we carried out a comparative in silico analysis of the protein target´s orthologues, focusing mainly on post-translational modifications. FINDINGS: A2R1 recognizes a parasite protein of ~50 kDa present in all life cycle stages of T. cruzi, as well as in other members of the kinetoplastid family, showing a defined immunofluorescence labeling pattern consistent with the cytoskeleton. A2R1 binds to tubulin, but this interaction relies on its post-translational modifications. Interestingly, this antibody also targets mammalian tubulin only present in brain, staining in and around cell bodies of the human peripheral and central nervous system. INTERPRETATION: Our findings demonstrate for the first time the existence of a human antibody against T. cruzi tubulin capable of cross-reacting with a human neural protein. This work re-emphasizes the role of molecular mimicry between host and parasitic antigens in the development of pathological manifestations of T. cruzi infection.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Protozoan/pharmacology , Chagas Disease/drug therapy , Chagas Disease/parasitology , Recombinant Fusion Proteins/pharmacology , Trypanosoma cruzi/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Protozoan/immunology , Antibodies, Protozoan/therapeutic use , Antibody Specificity/immunology , Antigens, Protozoan/immunology , Cell Line , Cloning, Molecular , Cross Reactions/immunology , Drug Development , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescent Antibody Technique , Gene Expression , Humans , Immunoprecipitation , Mass Spectrometry , Mice , Molecular Mimicry , Rats , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/therapeutic use , Sequence Analysis, DNA , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , Single-Chain Antibodies/therapeutic use
11.
FASEB J ; 34(6): 7610-7630, 2020 06.
Article in English | MEDLINE | ID: mdl-32307766

ABSTRACT

Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Ceramides/pharmacology , Signal Transduction/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , HeLa Cells , Humans , Phosphorylation/drug effects , Sphingomyelin Phosphodiesterase/metabolism
12.
Sci Transl Med ; 12(528)2020 01 29.
Article in English | MEDLINE | ID: mdl-31996464

ABSTRACT

Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERß, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.


Subject(s)
Diabetes Mellitus/drug therapy , Obesity/drug therapy , Receptors, G-Protein-Coupled/agonists , Adipose Tissue/pathology , Adiposity/drug effects , Animals , Cell Respiration , Disease Models, Animal , Energy Metabolism , Estrogens/deficiency , Female , Genes, Mitochondrial , Glucose/metabolism , Homeostasis , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Obesity/complications , Ovariectomy , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Treatment Outcome , Up-Regulation , Weight Gain
13.
JCI Insight ; 4(10)2019 05 16.
Article in English | MEDLINE | ID: mdl-31092731

ABSTRACT

Virulent protozoans named Leishmania in tropical and subtropical areas produce devastating diseases by exploiting host immune responses. Amastigotes of Leishmania amazonensis stimulate macrophages to express CD200, an immunomodulatory ligand, which binds to its cognate receptor (CD200R) and inhibits the inducible nitric oxide synthase and nitric oxide (iNOS/NO) signaling pathways, thereby promoting intracellular survival. However, the mechanisms underlying CD200 induction in macrophages remain largely unknown. Here, we show that phagocytosis-mediated internalization of L. amazonensis amastigotes following activation of endosomal TLR9/MyD88/TRIF signaling is critical for inducing CD200 in infected macrophages. We also demonstrate that Leishmania microvesicles containing DNA fragments activate TLR9-dependent CD200 expression, which inhibits the iNOS/NO pathway and modulates the course of L. amazonensis infection in vivo. These findings demonstrate that Leishmania exploits TLR-signaling pathways not only to inhibit macrophage microbicidal function, but also to evade host systemic immune responses, which has many implications in the severity of the disease.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Antigens, CD/metabolism , Leishmaniasis/immunology , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Toll-Like Receptor 9/metabolism , Animals , Antigens, CD/immunology , Cytokines/metabolism , Disease Models, Animal , Immunity, Innate , Leishmania , Macrophages/metabolism , Mice , Mice, Knockout , Nitric Oxide Synthase Type II/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptors/genetics , Virulence
14.
JCI Insight ; 3(9)2018 05 03.
Article in English | MEDLINE | ID: mdl-29720567

ABSTRACT

We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neoplasm/immunology , Antigens, Neoplasm/immunology , Breast Neoplasms/immunology , Heat-Shock Proteins/immunology , Lung Neoplasms/immunology , Receptor, EphA5/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neoplasm/isolation & purification , Antibodies, Neoplasm/therapeutic use , Antibody Affinity , Antibody Specificity , Bacteriophages , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Surface Display Techniques , Cell Survival , Endoplasmic Reticulum Chaperone BiP , Female , High-Throughput Screening Assays , Humans , Immunoglobulin Variable Region/immunology , Immunotherapy , Lung Neoplasms/therapy , Mice , Plasmids , Proof of Concept Study , Recombinant Proteins , Saccharomyces cerevisiae , Xenograft Model Antitumor Assays
15.
Sci Rep ; 7(1): 4243, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28652618

ABSTRACT

Cytoskeletal-associated proteins play an active role in coordinating the adhesion and migration machinery in cancer progression. To identify functional protein networks and potential inhibitors, we screened an internalizing phage (iPhage) display library in tumor cells, and selected LGRFYAASG as a cytosol-targeting peptide. By affinity purification and mass spectrometry, intracellular annexin A2 was identified as the corresponding binding protein. Consistently, annexin A2 and a cell-internalizing, penetratin-fused version of the selected peptide (LGRFYAASG-pen) co-localized and specifically accumulated in the cytoplasm at the cell edges and cell-cell contacts. Functionally, tumor cells incubated with LGRFYAASG-pen showed disruption of filamentous actin, focal adhesions and caveolae-mediated membrane trafficking, resulting in impaired cell adhesion and migration in vitro. These effects were paralleled by a decrease in the phosphorylation of both focal adhesion kinase (Fak) and protein kinase B (Akt). Likewise, tumor cells pretreated with LGRFYAASG-pen exhibited an impaired capacity to colonize the lungs in vivo in several mouse models. Together, our findings demonstrate an unrecognized functional link between intracellular annexin A2 and tumor cell adhesion, migration and in vivo grafting. Moreover, this work uncovers a new peptide motif that binds to and inhibits intracellular annexin A2 as a candidate therapeutic lead for potential translation into clinical applications.


Subject(s)
Annexin A2/genetics , Focal Adhesion Protein-Tyrosine Kinases/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-akt/genetics , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Animals , Cell Adhesion/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cytosol/drug effects , Cytosol/metabolism , Humans , Lung/drug effects , Lung/pathology , Mice , Neoplasms/pathology , Peptide Library , Peptides/pharmacology , Phosphorylation , Xenograft Model Antitumor Assays
16.
Cancer Res ; 77(12): 3144-3150, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28428279

ABSTRACT

Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a nonproteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short timeframe. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. Cancer Res; 77(12); 3144-50. ©2017 AACR.


Subject(s)
Antigens, Neoplasm/metabolism , Mitogen-Activated Protein Kinases/metabolism , Myeloblastin/metabolism , Neoplasm Invasiveness/pathology , Prostatic Neoplasms/pathology , Tumor Microenvironment/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Bone Neoplasms/secondary , Cell Adhesion/physiology , Cell Line, Tumor , Cell Movement/physiology , Heterografts , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Prostatic Neoplasms/metabolism
17.
Proc Natl Acad Sci U S A ; 113(45): 12780-12785, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791177

ABSTRACT

Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.

18.
Proc Natl Acad Sci U S A ; 113(45): 12786-12791, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791181

ABSTRACT

Aggressive variant prostate cancers (AVPC) are a clinically defined group of tumors of heterogeneous morphologies, characterized by poor patient survival and for which limited diagnostic and treatment options are currently available. We show that the cell surface 78-kDa glucose-regulated protein (GRP78), a receptor that binds to phage-display-selected ligands, such as the SNTRVAP motif, is a candidate target in AVPC. We report the presence and accessibility of this receptor in clinical specimens from index patients. We also demonstrate that human AVPC cells displaying GRP78 on their surface could be effectively targeted both in vitro and in vivo by SNTRVAP, which also enabled specific delivery of siRNA species to tumor xenografts in mice. Finally, we evaluated ligand-directed strategies based on SNTRVAP-displaying adeno-associated virus/phage (AAVP) particles in mice bearing MDA-PCa-118b, a patient-derived xenograft (PDX) of castration-resistant prostate cancer bone metastasis that we exploited as a model of AVPC. For theranostic (a merging of the terms therapeutic and diagnostic) studies, GRP78-targeting AAVP particles served to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) gene, which has a dual function as a molecular-genetic sensor/reporter and a cell suicide-inducing transgene. We observed specific and simultaneous PET imaging and treatment of tumors in this preclinical model of AVPC. Our findings demonstrate the feasibility of GPR78-targeting, ligand-directed theranostics for translational applications in AVPC.

19.
JCI Insight ; 1(10)2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27468426

ABSTRACT

We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases.

20.
PLoS Negl Trop Dis ; 4(3): e613, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20209152

ABSTRACT

Oral infection by Trypanosoma cruzi has been the primary cause of recent outbreaks of acute Chagas' diseases. This route of infection may involve selective binding of the metacyclic trypomastigote surface molecule gp82 to gastric mucin as a first step towards invasion of the gastric mucosal epithelium and subsequent systemic infection. Here we addressed that question by performing in vitro and in vivo experiments. A recombinant protein containing the complete gp82 sequence (J18), a construct lacking the gp82 central domain (J18*), and 20-mer synthetic peptides based on the gp82 central domain, were used for gastric mucin binding and HeLa cell invasion assays, or for in vivo experiments. Metacyclic trypomastigotes and J18 bound to gastric mucin whereas J18* failed to bind. Parasite or J18 binding to submaxillary mucin was negligible. HeLa cell invasion by metacyclic forms was not affected by gastric mucin but was inhibited in the presence of submaxillary mucin. Of peptides tested for inhibition of J18 binding to gastric mucin, the inhibitory peptide p7 markedly reduced parasite invasion of HeLa cells in the presence of gastric mucin. Peptide p7*, with the same composition as p7 but with a scrambled sequence, had no effect. Mice fed with peptide p7 before oral infection with metacyclic forms developed lower parasitemias than mice fed with peptide p7*. Our results indicate that selective binding of gp82 to gastric mucin may direct T. cruzi metacyclic trypomastigotes to stomach mucosal epithelium in oral infection.


Subject(s)
Gastric Mucins/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/pathogenicity , Variant Surface Glycoproteins, Trypanosoma/metabolism , Virulence Factors/metabolism , Animals , Cell Adhesion , Chagas Disease/parasitology , Epithelial Cells/parasitology , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Protein Binding , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...