Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 249(3): 739-749, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30374914

ABSTRACT

MAIN CONCLUSION: The level of resistance induced in different tomato genotypes after ß-CRY treatment correlated with the upregulation of defence genes, but not sterol binding and involved ethylene and jasmonic acid signalling. Elicitins, a family of small proteins secreted by Phytophthora and Pythium spp., are the most well-known microbe-associated molecular patterns of oomycetes, a lineage of fungus-like organisms that include many economically significant crop pathogens. The responses of tomato plants to elicitin INF1 produced by Phytophthora infestans have been studied extensively. Here, we present studies on the responses of three tomato genotypes to ß-cryptogein (ß-CRY), a potent elicitin secreted by Phytophthora cryptogea that induces hypersensitive response (HR) cell death in tobacco plants and confers greater resistance to oomycete infection than acidic elicitins like INF1. We also studied ß-CRY mutants impaired in sterol binding (Val84Phe) and interaction with the binding site on tobacco plasma membrane (Leu41Phe), because sterol binding was suggested to be important in INF1-induced resistance. Treatment with ß-CRY or the Val84Phe mutant induced resistance to powdery mildew caused by the pathogen Pseudoidium neolycopersici, but not the HR cell death observed in tobacco and potato plants. The level of resistance induced in different tomato genotypes correlated with the upregulation of defence genes including defensins, ß-1,3-glucanases, heveins, chitinases, osmotins, and PR1 proteins. Treatment with the Leu41Phe mutant did not induce this upregulation, suggesting similar elicitin recognition in tomato and tobacco. However, here ß-CRY activated ethylene and jasmonic acid signalling, but not salicylic acid signalling, demonstrating that elicitins activate different downstream signalling processes in different plant species. This could potentially be exploited to enhance the resistance of Phytophthora-susceptible crops.


Subject(s)
Cyclopentanes/metabolism , Ethylenes/metabolism , Fungal Proteins/metabolism , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Signal Transduction , Solanum lycopersicum/metabolism , Host-Pathogen Interactions , Hydrogen Peroxide/metabolism , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Phytophthora , Plant Leaves/metabolism , Plant Leaves/microbiology , Pythium , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism
2.
Chaos ; 27(9): 093937, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28964114

ABSTRACT

We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.


Subject(s)
Ion Channel Gating , Models, Biological , Sodium Channels/metabolism , Markov Chains , Time Factors
3.
PLoS One ; 12(5): e0172292, 2017.
Article in English | MEDLINE | ID: mdl-28467407

ABSTRACT

The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.


Subject(s)
Computer Simulation , Heart/physiology , Action Potentials , Cardiovascular Diseases/physiopathology , Electrocardiography , Humans , Software
4.
Ann Bot ; 119(5): 829-840, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27660055

ABSTRACT

Background and Aims: Current strategies for increased crop protection of susceptible tomato plants against pathogen infections include treatment with synthetic chemicals, application of natural pathogen-derived compounds or transfer of resistance genes from wild tomato species within breeding programmes. In this study, a series of 45 genes potentially involved in defence mechanisms was retrieved from the genome sequence of inbred reference tomato cultivar Solanum lycopersicum 'Heinz 1706'. The aim of the study was to analyse expression of these selected genes in wild and cultivated tomato plants contrasting in resistance to the biotrophic pathogen Oidium neolycopersici , the causative agent of powdery mildew. Plants were treated either solely with potential resistance inducers or by inducers together with the pathogen. Methods: The resistance against O. neolycopersici infection as well as RT-PCR-based analysis of gene expression in response to the oomycete elicitor oligandrin and chemical agent ß-aminobutyric acid (BABA) were investigated in the highly susceptible domesticated inbred genotype Solanum lycopersicum 'Amateur' and resistant wild genotype Solanum habrochaites . Key Results: Differences in basal expression levels of defensins, germins, ß-1,3-glucanases, heveins, chitinases, osmotins and PR1 proteins in non-infected and non-elicited plants were observed between the highly resistant and susceptible genotypes. Moreover, these defence genes showed an extensive up-regulation following O. neolycopersici infection in both genotypes. Application of BABA and elicitin induced expression of multiple defence-related transcripts and, through different mechanisms, enhanced resistance against powdery mildew in the susceptible tomato genotype. Conclusions: The results indicate that non-specific resistance in the resistant genotype S. habrochaites resulted from high basal levels of transcripts with proven roles in defence processes. In the susceptible genotype S. lycopersicum 'Amateur', oligandrin- and BABA-induced resistance involved different signalling pathways, with BABA-treated leaves displaying direct activation of the ethylene-dependent signalling pathway, in contrast to previously reported jasmonic acid-mediated signalling for elicitins.


Subject(s)
Aminobutyrates/pharmacology , Ascomycota/physiology , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Sesquiterpenes/pharmacology , Solanum lycopersicum/genetics , Solanum/genetics , Disease Resistance , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Solanum/immunology , Solanum/microbiology , Up-Regulation
5.
IEEE Trans Biomed Eng ; 62(4): 1070-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25376030

ABSTRACT

The modern Markov chain models of ionic channels in excitable membranes are numerically stiff. The popular numerical methods for these models require very small time steps to ensure stability. Our objective is to formulate and test two methods addressing this issue, so that the timestep can be chosen based on accuracy rather than stability. Both proposed methods extend Rush-Larsen technique, which was originally developed to Hogdkin-Huxley type gate models. One method, "matrix Rush-Larsen" (MRL) uses a matrix reformulation of the Rush-Larsen scheme, where the matrix exponentials are calculated using precomputed tables of eigenvalues and eigenvectors. The other, "hybrid operator splitting" (HOS) method exploits asymptotic properties of a particular Markov chain model, allowing explicit analytical expressions for the substeps. We test both methods on the Clancy and Rudy (2002) I(Na)Markov chain model. With precomputed tables for functions of the transmembrane voltage, both methods are comparable to the forward Euler method in accuracy and computational cost, but allow longer time steps without numerical instability. We conclude that both methods are of practical interest. MRL requires more computations than HOS, but is formulated in general terms which can be readily extended to other Markov chain channel models, whereas the utility of HOS depends on the asymptotic properties of a particular model. The significance of the methods is that they allow a considerable speed-up of large-scale computations of cardiac excitation models by increasing the time step, while maintaining acceptable accuracy and preserving numerical stability.


Subject(s)
Models, Biological , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Sodium Channels/physiology , Algorithms , Computer Simulation , Markov Chains
6.
Cardiovasc Res ; 105(2): 223-32, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25497550

ABSTRACT

AIMS: Polyunsaturated fatty n-3 acids (PUFAs) have been reported to exhibit antiarrhythmic properties. However, the mechanisms of action remain unclear. We studied the electrophysiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on IKs, and on the expression and location of Kv7.1 and KCNE1. METHODS AND RESULTS: Experiments were performed using patch-clamp, western blot, and sucrose gradient techniques in COS7 cells transfected with Kv7.1/KCNE1 channels. Acute perfusion with both PUFAs increased Kv7.1/KCNE1 current, this effect being greater for DHA than for EPA. Similar results were found in guinea pig cardiomyocytes. Acute perfusion of either PUFA slowed the activation kinetics and EPA shifted the activation curve to the left. Conversely, chronic EPA did not modify Kv7.1/KCNE1 current magnitude and shifted the activation curve to the right. Chronic PUFAs decreased the expression of Kv7.1, but not of KCNE1, and induced spatial redistribution of Kv7.1 over the cell membrane. Cholesterol depletion with methyl-ß-cyclodextrin increased Kv7.1/KCNE1 current magnitude. Under these conditions, acute EPA produced similar effects than those induced in non-cholesterol-depleted cells. A ventricular action potential computational model suggested antiarrhythmic efficacy of acute PUFA application under IKr block. CONCLUSIONS: We provide evidence that acute application of PUFAs increases Kv7.1/KCNE1 through a probably direct effect, and shows antiarrhythmic efficacy under IKr block. Conversely, chronic EPA application modifies the channel activity through a change in the Kv7.1/KCNE1 voltage-dependence, correlated with a redistribution of Kv7.1 over the cell membrane. This loss of function may be pro-arrhythmic. This shed light on the controversial effects of PUFAs regarding arrhythmias.


Subject(s)
Eicosapentaenoic Acid/pharmacology , Fatty Acids, Unsaturated/metabolism , Ion Channel Gating , Membrane Microdomains/metabolism , Potassium Channels, Voltage-Gated/metabolism , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/pharmacology , COS Cells , Chlorocebus aethiops , Docosahexaenoic Acids/pharmacology , Humans , Ion Channel Gating/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
7.
Europace ; 16(10): 1524-33, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25085203

ABSTRACT

AIMS: Atrial anti-arrhythmic effects of ß-adrenoceptor antagonists (ß-blockers) may involve both a suppression of pro-arrhythmic effects of catecholamines, and an adaptational electrophysiological response to chronic ß-blocker use; so-called 'pharmacological remodelling'. In human atrium, such remodelling decreases the transient outward (Ito) and inward rectifier (IK1) K(+) currents, and increases the cellular action potential duration (APD) and effective refractory period (ERP). However, the consequences of these changes on mechanisms of genesis and maintenance of atrial fibrillation (AF) are unknown. Using mathematical modelling, we tested the hypothesis that the long-term adaptational decrease in human atrial Ito and IK1 caused by chronic ß-blocker therapy, i.e. independent of acute electrophysiological effects of ß-blockers, in an otherwise un-remodelled atrium, could suppress AF. METHODS AND RESULTS: Contemporarily, biophysically detailed human atrial cell and tissue models were used to investigate effects of the ß-blocker-based pharmacological remodelling. Chronic ß-blockade remodelling prolonged atrial cell APD and ERP. The incidence of small amplitude APD alternans in the CRN model was reduced. At the 1D tissue level, ß-blocker remodelling decreased the maximum pacing rate at which APs could be conducted. At the three-dimensional organ level, ß-blocker remodelling reduced the life span of re-entry scroll waves. CONCLUSION: This study improves our understanding of the electrophysiological mechanisms of AF suppression by chronic ß-blocker therapy. Atrial fibrillation suppression may involve a reduced propensity for maintenance of re-entrant excitation waves, as a consequence of increased APD and ERP.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Atrial Fibrillation/drug therapy , Atrial Remodeling , Computer Simulation , Action Potentials/drug effects , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Humans , Ion Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...