Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 14(10)2018 03.
Article in English | MEDLINE | ID: mdl-29359400

ABSTRACT

Copper nanoparticles (Cu-NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu-NPs using the metal-reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu-NPs are predominantly intracellular and present in a typical size range of 20-40 nm. Serial block-face scanning electron microscopy demonstrates the Cu-NPs are well-dispersed across the 3D structure of the cells. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine-structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu2 O upon exposure to air. The catalytic activity of the Cu-NPs is demonstrated in an archetypal "click chemistry" reaction, generating good yields during azide-alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu-NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.

2.
J Am Soc Nephrol ; 26(12): 3021-34, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25896609

ABSTRACT

Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-ß. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease.


Subject(s)
Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Kidney Diseases/genetics , Kidney Glomerulus/metabolism , Albuminuria/genetics , Albuminuria/metabolism , Animals , Collagen Type I/genetics , Collagen Type I/metabolism , Cyclin-Dependent Kinase 5/metabolism , Extracellular Matrix/ultrastructure , Female , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , Genetic Predisposition to Disease , Glomerular Basement Membrane/ultrastructure , Kidney Diseases/metabolism , Liver X Receptors , Male , Matrix Metalloproteinases/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mice , Mice, Inbred Strains , NF-E2-Related Factor 2/metabolism , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Netrins , Oligonucleotide Array Sequence Analysis , Orphan Nuclear Receptors/metabolism , RNA/analysis , Sex Factors , Signal Transduction , Tenascin/genetics , Tenascin/metabolism
3.
PLoS Genet ; 11(4): e1005058, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25838181

ABSTRACT

Lowe syndrome and Dent-2 disease are caused by mutation of the inositol 5-phosphatase OCRL1. Despite our increased understanding of the cellular functions of OCRL1, the underlying basis for the renal tubulopathy seen in both human disorders, of which a hallmark is low molecular weight proteinuria, is currently unknown. Here, we show that deficiency in OCRL1 causes a defect in endocytosis in the zebrafish pronephric tubule, a model for the mammalian renal tubule. This coincides with a reduction in levels of the scavenger receptor megalin and its accumulation in endocytic compartments, consistent with reduced recycling within the endocytic pathway. We also observe reduced numbers of early endocytic compartments and enlarged vacuolar endosomes in the sub-apical region of pronephric cells. Cell polarity within the pronephric tubule is unaffected in mutant embryos. The OCRL1-deficient embryos exhibit a mild ciliogenesis defect, but this cannot account for the observed impairment of endocytosis. Catalytic activity of OCRL1 is required for renal tubular endocytosis and the endocytic defect can be rescued by suppression of PIP5K. These results indicate for the first time that OCRL1 is required for endocytic trafficking in vivo, and strongly support the hypothesis that endocytic defects are responsible for the renal tubulopathy in Lowe syndrome and Dent-2 disease. Moreover, our results reveal PIP5K as a potential therapeutic target for Lowe syndrome and Dent-2 disease.


Subject(s)
Endocytosis , Oculocerebrorenal Syndrome/genetics , Phosphoric Monoester Hydrolases/metabolism , Pronephros/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cell Polarity , Endosomes/metabolism , Gene Deletion , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
4.
J Cell Biol ; 207(4): 499-516, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25422374

ABSTRACT

Cytoplasmic dynein 1 (dynein) is a minus end-directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs' role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis.


Subject(s)
Cytoplasmic Dyneins/metabolism , Kinesins/antagonists & inhibitors , Mitosis/physiology , Spindle Apparatus/pathology , Animals , Cell Line, Tumor , Cell Movement , Centrioles/physiology , Cytoplasmic Dyneins/genetics , Dynactin Complex , Female , HEK293 Cells , HeLa Cells , Humans , Kinetochores , Microtubule Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubules/metabolism , Molecular Sequence Data , RNA Interference , RNA, Small Interfering , Spindle Apparatus/genetics , Xenopus laevis
5.
Dev Dyn ; 240(11): 2520-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22012594

ABSTRACT

A distinctive feature of embryonic tendon development is the steady increase in collagen fibril diameter and associated improvement of tissue mechanical properties. A potential mechanical stimulus for these changes is slow stretching of the tendon during limb growth. Testing this hypothesis in vivo is complicated by the presence of other developmental processes including muscle development and innervation. Here we used a cell culture tendon-like construct to determine if slow stretch can explain the increases in fibril diameter and mechanical properties that are observed in vivo. Non-stretched constructs had an ultrastructural appearance and mechanical properties similar to those of early embryonic tendon. However, slowly stretching during 4 days in culture increased collagen fibril diameter, fibril packing volume, and mechanical stiffness, and thereby mimicked embryonic development. 3D EM showed cells with improved longitudinal alignment and elongated nuclei, which raises the hypothesis that nuclear deformation could be a novel mechanism during tendon development.


Subject(s)
Biomimetics/methods , Embryonic Development/physiology , Stress, Mechanical , Tendons/physiology , Tissue Expansion/methods , Animals , Biomechanical Phenomena/physiology , Cell Culture Techniques , Cells, Cultured , Chick Embryo , Tendons/cytology , Tensile Strength/physiology , Tissue Engineering/methods , Tissue Expansion/instrumentation , Toe Joint/cytology , Toe Joint/embryology , Toes/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...