Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Radiol ; 64(3): 1166-1174, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35786055

ABSTRACT

BACKGROUND: Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) could be helpful to separate true disease progression from pseudo-progression in brain metastases when assessing the need for retreatment. However, the selection of arterial input functions (AIFs) is not standardized for analysis, limiting its use for this application. PURPOSE: To compare population-based AIFs, AIFs specific to each patient, and AIFs specific to every visit in the longitudinal follow-up of brain metastases. MATERIAL AND METHODS: Longitudinal data were collected from eight patients before treatment (6 of 8 patients) and after treatment (6-17 visits). Imaging was performed using a 1.5-T MRI system. Lesions were segmented by subtracting precontrast images from postcontrast images. Cerebral blood volume (rCBV) and cerebral blood flow (rCBF) were computed, and Pearson's product moment correlation coefficients were calculated to evaluate similarity of DSC parameters dependent on various AIF choices across time. AIF shape characteristics were compared. Parameter differences between white matter (WM) and gray matter (GM) were obtained to determine which AIF choice maximizes tissue differentiation. RESULTS: Although DSC parameters follow similar patterns in time, the various AIF selections cause large parameter variations with relative standard deviations of up to ±60%. AIFs sampled in one patient across sessions more similar in shape than AIFs sampled across patients. Estimates of rCBV based on scan-specific AIFs differentiated better between perfusion in WM and GM than patient-specific or population-based AIFs (P ≤ 0.02). CONCLUSION: Results indicate that scan-specific AIFs are the best choice for DSC-MRI parameter estimations in the longitudinal follow-up of brain metastases.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Arteries , Gray Matter , Algorithms , Cerebrovascular Circulation/physiology , Contrast Media
2.
Neurooncol Adv ; 4(1): vdac070, 2022.
Article in English | MEDLINE | ID: mdl-35673606

ABSTRACT

Background: Following stereotactic radiosurgery (SRS), predicting treatment response is not possible at an early stage using structural imaging alone. Hence, the current study aims at investigating whether dynamic susceptibility contrast (DSC)-MRI estimated prior to SRS can provide predictive biomarkers in response to SRS treatment and characterize vascular characteristics of pseudo-progression. Methods: In this retrospective study, perfusion-weighted DSC-MRI image data acquired with a temporal resolution of 1.45 seconds were collected from 41 patients suffering from brain metastases. Outcome was defined based on lesion volume changes in time (determined on structural images) or death. Motion correction and manual lesion delineation were performed prior to semi-automated, voxel-wise perfusion analysis. Statistical testing was performed using linear regression and a significance threshold at P = .05. Age, sex, primary cancers (pulmonary cancer and melanoma), lesion volume, and dichotomized survival time were added as covariates in the linear regression models (ANOVA). Results: Relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) were found to be significantly lower prior to SRS treatment in patients with increasing lesion volume or early death post-SRS (P ≤ .01). Conclusion: Unfavorable treatment outcome may be linked to low perfusion prior to SRS. Pseudo-progression may be preceded by a transient rCBF increase post-SRS. However, results should be verified in different or larger patient material.

3.
Diagnostics (Basel) ; 11(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34943621

ABSTRACT

Diffusion MRI is a useful tool to investigate the microstructure of brain tumors. However, the presence of fast diffusing isotropic signals originating from non-restricted edematous fluids, within and surrounding tumors, may obscure estimation of the underlying tissue characteristics, complicating the radiological interpretation and quantitative evaluation of diffusion MRI. A multi-shell regularized free water (FW) elimination model was therefore applied to separate free water from tissue-related diffusion components from the diffusion MRI of 26 treatment-naïve glioma patients. We then investigated the diagnostic value of the derived measures of FW maps as well as FW-corrected tensor-derived maps of fractional anisotropy (FA). Presumed necrotic tumor regions display greater mean and variance of FW content than other parts of the tumor. On average, the area under the receiver operating characteristic (ROC) for the classification of necrotic and enhancing tumor volumes increased by 5% in corrected data compared to non-corrected data. FW elimination shifts the FA distribution in non-enhancing tumor parts toward higher values and significantly increases its entropy (p ≤ 0.003), whereas skewness is decreased (p ≤ 0.004). Kurtosis is significantly decreased (p < 0.001) in high-grade tumors. In conclusion, eliminating FW contributions improved quantitative estimations of FA, which helps to disentangle the cancer heterogeneity.

5.
Magn Reson Imaging ; 77: 204-212, 2021 04.
Article in English | MEDLINE | ID: mdl-33359424

ABSTRACT

The temporomandibular joint (TMJ) is typically involved in 45-87% of children with Juvenile Idiopathic Arthritis (JIA). Accurate diagnosis of JIA is difficult as various clinical tests, including MRI, disagree. The purpose of this study is to optimize the methodological aspects of Dynamic Contrast Enhanced (DCE) MRI of the TMJ in children. In this cross-sectional study, including data from 73 JIA affected children, aged 6-15 years, effects of motion correction, sampling rate and parametric modelling on DCE-MRI data is investigated. Consensus among three radiologists determined the regions of interest. Quantitative perfusion parameters were estimated using four perfusion models; the Adiabatic Approximation to Tissue Homogeneity (AATH), Distributed Capillary Adiabatic Tissue Homogeneity (DCATH), Gamma Capillary Transit Time (GCTT) and Two Compartment Exchange (2CXM) models. Effects of motion correction were evaluated by a sum of least squares between corrected raw data and the GCTT model. The effect of systematically down sampling the raw data was tested. The sum of least squares was computed across all pharmacokinetic models. Relative difference perfusion parameters between the left and right TMJ were used for an unsupervised k-means based stratification of the data based on a principal component analysis, as well as for a supervised random forest classification. Diagnostic sensitivity and specificity were computed relative to structural image scorings. Paired sample t-tests, as well as ANOVA tests, were used (significant threshold: p < 0.05) with Tukeys post hoc test. High-level elastic motion correction provides the best least square fit to the GCTT model (percental improvement: 72-84%). A 4 s sampling rate captures more of the potentially disease relevant signal variations. The various parametric models all leave comparable residues (relative standard deviation: 3.4%). In further evaluation of DCE-MRI as a potential diagnostic tool for JIA a high-level elastic motion correction scheme should be adopted, with a sampling rate of at least 4 s. Results suggest that DCE-MRI data can be a valuable part in JIA diagnostics in the TMJ.


Subject(s)
Arthritis, Juvenile/diagnostic imaging , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Models, Statistical , Movement , Temporomandibular Joint/diagnostic imaging , Adolescent , Artifacts , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...