Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 3488, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568711

ABSTRACT

The paper presents the possibility of applying ultrasonic technology for inactivation of mesophilic aerobic microorganisms, lactic acid bacteria, coliform bacteria, and yeast with the maintenance of the chemical and structural properties of tomato juice. The research was conducted on fresh tomato juice obtained from the Apis F1 variety. Pressed juice was exposed to high power ultrasound and frequency 20 kHz with three operational parameters: ultrasound intensity (28 and 40 W cm-2), treatment time (2, 5, and 10 min), and product storage time (1, 4, 7 and 10 days). The temperature of the juice during the sonication ranged from 37 to 52 °C depending on the intensity of ultrasound and time of treatment. Effectiveness of the tested microorganisms eradication in the juice depended on the amplitude and duration of the ultrasound treatment. It was shown that the juice exposed to an ultrasonic field with an intensity of 40 W cm-2 for 10 min was microbiologically pure and free from spoilage microorganism even after 10 storage days. No statistically significant differences in pH were found between the untreated juice and the sonicated samples. The ultrasonic treatment was found to change the content of lycopene in small degree (both an increase and a decrease, depending on the processing time) and to induce a small decrease in the vitamin C content. The study suggests that the ultrasonic treatment can be successfully implemented on an industrial scale for the production of not-from-concentrate (NFC) tomato juice.


Subject(s)
Bacteria/growth & development , Food Preservation/methods , Food Quality , Fruit and Vegetable Juices/microbiology , Solanum lycopersicum , Sonication , Ultrasonic Waves , Yeasts/growth & development , Ascorbic Acid/analysis , Bacterial Load , Colony Count, Microbial , Fruit and Vegetable Juices/analysis , Lycopene/analysis
2.
Sci Rep ; 10(1): 20959, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33262535

ABSTRACT

Cold Atmospheric pressure Plasma (CAP) is a non-thermal method used in food processing. CAP generated with the use of nitrogen in a Glide-arc device for 300 to 600 s exhibited high potential for microbial decontamination and did not induce substantial changes in the physicochemical properties of NFC tomato juice. Samples exposed to cold atmospheric plasma had mostly an intact structure, as revealed by digital microscopy. The investigations indicate that CAP can be applied for biological and chemical waste-free decontamination of food and extension of its shelf life.

3.
Sci Rep ; 9(1): 8407, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31182762

ABSTRACT

The Cold Atmospheric pressure Plasma (CAP) technology is an emerging technology used for conditioning and microbiological decontamination of biomaterials including food. A novel tool for inactivation of juice background spoilage microorganisms, as well as high count of inoculated yeast while maintaining physicochemical properties in tomato juice - CAP technology was utilized in this study. Dry matter content and pH were not significantly influenced by CAP generated in GlidArc reactor. Small increase of lycopene, and slight loss of vitamin C content were observed.


Subject(s)
Atmospheric Pressure , Chemical Phenomena , Food Preservation , Fruit and Vegetable Juices/microbiology , Plasma Gases/chemistry , Refrigeration , Solanum lycopersicum/chemistry , Bacteria/cytology , Saccharomyces cerevisiae/cytology
4.
PLoS One ; 13(4): e0194349, 2018.
Article in English | MEDLINE | ID: mdl-29630623

ABSTRACT

The paper presents the results of an experiment on the effect of pre-sowing stimulation of seeds with atmospheric pressure plasma jet operating with dielectric barrier discharge (DBD plasma jet) on the process of germination of Thuringian Mallow (Lavatera thuringiaca L.). Five groups of seeds characterized by a different exposure times (1, 2, 5, 10 and 15 minutes) as well as untreated seeds-control were used. Pre-sowing plasma stimulation of seeds improved germination parameters such as: germination capacity and germination energy for all tested groups relative to control. The highest germination parameters were obtained for seeds stimulated with plasma for the exposure times of 2 and 5 min. The analysis of the contact surface angle indicated the decrease of its' mean values upon seed stimulation while no statistical effects were observed. Analysis of the SEM scans revealed the increase in seed pattern intensity which could be attributed to removing of the surface parts of cuticle possibly covered with wax upon short time-2 and 5 min plasma treatment. Such a phenomenon can act similarly to mechanical scarification of seeds. Longer exposure of seeds to plasma resulted in affecting the deeper zone of cuticle and damage or fracture of some parts of the cuticle. Lower germination parameters of seeds upon longer exposure times to plasma may indicate mechanical damage of the seeds.


Subject(s)
Atmospheric Pressure , Germination , Malvaceae/physiology , Plasma Gases , Seeds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...