Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Chemosphere ; 353: 141529, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428534

ABSTRACT

An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 µg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Male , Photolysis , Toxicity Tests/methods , Zebrafish , Cefepime/toxicity , Chromatography, Liquid , Tandem Mass Spectrometry
2.
J Med Chem ; 67(2): 1580-1610, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38190615

ABSTRACT

Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Selenium , Rats , Animals , Alzheimer Disease/drug therapy , Serotonin/therapeutic use , Rats, Wistar , Neuroprotection , Antioxidants/pharmacology , Antioxidants/therapeutic use , Receptors, Serotonin , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
3.
Pharmaceutics ; 15(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38004587

ABSTRACT

Determining the influence of environmental factors on the stability of drugs is very helpful when choosing excipients, storage conditions or packaging materials. In addition, information about possible toxic degradation products enables detecting and avoiding the harmful side effects of the drug. We used the thin-layer chromatographic-densitometric procedure for the assay of five coxibs, conducted degradation studies in various environments and at different temperatures along with the determination of pharmacokinetic parameters. The results were subjected to chemometric analysis, to investigate and visualize the similarities and differences of the studied coxibs. Samples of the tested drug were also analyzed by UPLC-MS/MS in order to identify degradation products, and determine possible drug degradation pathways. Using the human liver cancer HepG2 cell line, the hepatotoxic effect of the degradation products was also determined. It was observed that all substances were relatively stable under the analyzed conditions and degraded more in acidic than alkaline environments. Robenacoxib is the drug that decomposes the fastest, and cimicoxib turned out to be the most stable. Robenacoxib also showed significant hepatotoxicity at the highest tested concentration, which correlates with the high degree of its degradation, and the probable formation of a more hepatoxic product. The obtained mass spectra of compounds formed as a result of hydrolysis of the protonated drug leading to the formation of several product ions, which enabled us to propose probable degradation pathways.

4.
Pharmaceutics ; 15(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37514047

ABSTRACT

Considering the potential of nanostructured titanium dioxide layers as drug delivery systems, it is advisable to indicate the possibility of creating a functional drug delivery system based on anodic TiO2 for celecoxib as an alternative anti-inflammatory drug and its inclusion complex with ß-cyclodextrin. First, the optimal composition of celecoxib-ß-cyclodextrin complexes was synthesized and determined. The effectiveness of the complexation was quantified using isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR) nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Then, nanostructured titanium dioxide layers (TiO2) were synthesized using the electrochemical oxidation technique. The TiO2 layers with pore diameters of 60 nm and layer thickness of 1.60 µm were used as drug delivery systems. The samples were modified with pure celecoxib and the ß-cyclodextrin-celecoxib complex. The release profiles shown effective drug release from such layers during 24 h. After the initial burst release, the drug was continuously released from the pores. The presented results confirm that the use of nanostructured TiO2 as a drug delivery system can be effectively used in more complicated systems composed of ß-cyclodextrin-celecoxib complexes, making such drugs available for pain treatment, e.g., for orthopedic surgeries.

5.
Nutrients ; 15(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049490

ABSTRACT

Nowadays, the most important aspect related to the use of dietary supplements seems to be their quality. There are many reports indicating their insufficient quality primarily related to a much lower content of ingredients or even their absence. Currently, there is an increasing interest in supplementing the diet with various kinds of supplements, including those containing combinations of vitamins and minerals, among which preparations with vitamin D are very popular. This is probably due to the reduced production of this vitamin, depending on the amount of time spent in the sun and the use of UV-filters. Very often, preparations with cholecalciferol also contain vitamin K2, which is associated with their synergistic effect. Therefore, the question arises about the effectiveness of supplementation, which may be correlated with the quality of commonly available dietary supplements. In the presented work, it was undertaken to develop optimal conditions for the qualitative and quantitative determination of vitamins D2, D3 and K2 in dietary supplements available in various forms, using thin-layer chromatography with densitometric detection. As a result, the methodology for analyzing the content of three vitamins from various matrices was developed, optimized and validated in accordance with ICH requirements. The obtained results allow us to conclude that it is reliable and meets the requirements for analytical procedures used in the analysis of medicinal products. Based on the results obtained for examined dietary supplements, it can be stated that the amount of vitamin D3 in analyzed products is basically similar to that declared by the manufacturer, in contrast to vitamin K2, the content of which is diverse. The developed methodology seems to be a good, low-cost and quick way to control the quality of dietary supplements so that they can supplement the human diet and be a wholesome product.


Subject(s)
Dietary Supplements , Vitamins , Humans , Vitamins/analysis , Dietary Supplements/analysis , Vitamin A , Cholecalciferol , Vitamin D , Quality Control , Vitamin K
6.
Biomedicines ; 10(11)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36359341

ABSTRACT

Grapiprant is a new analgesic and anti-inflammatory drug belonging to the piprant class, approved in 2016 by the FDA Veterinary Medicine Center for the treatment of pain and inflammation associated with osteoarthritis in dogs. It acts as a highly selective antagonist of the EP4 receptor, one of the four prostaglandin E2 (PGE2) receptor subtypes. It has been shown to have anti-inflammatory effects in rat models of acute and chronic inflammation and clinical studies in people with osteoarthritis. The current state of knowledge suggests the possibility of using it in oncological therapy. The manuscript presents the development of conditions for the identification and quantitative determination of grapiprant by thin-layer chromatography with densitometric detection. The optimal separation of the substance occurs using silica gel 60F254 chromatographic plates and the mobile phase containing ethyl acetate-toluene-butylamine. Validation (according to ICH requirements) showed that the developed method is characterized by straightness of results in a wide concentration range with the limit of detection of 146.65 µg/mL. The %RSD values of the precision and accuracy confirm the sensitivity and reliability of the developed procedure. Next, the method was used for quantification of grapiprant in a pharmaceutical preparation, and for stability studies under various environmental conditions. Additionally, the mass studies were carried out on the stressed samples using the UPLC-MS/MS method. The degradation products were primarily characterized by comparing their mass fragmentation profiles with those of the drug. The results indicated a potential degradation pathway for grapiprant.

7.
Eur J Med Chem ; 243: 114761, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36179403

ABSTRACT

Lymphomas are still difficult to treat even with modern therapies as, among others, multidrug resistance (MDR) is often counteracting a successful cancer therapy. P-gp/ABC-transporters are well-known for their crucial role in the main tumour MDR mechanism, eliminating drugs and cytotoxic substances from the cancer cell by efflux, and their modulators are promising for innovative therapy, but none has been approved in the pharmaceutical market yet. Herein, we have designed, synthesised and analysed 30 novel seleno- and thioether 1,3,5-triazine derivatives conducting comprehensive studies to evaluate their potential application in human JURKAT lymphoma cells. Among the new compounds, four (11, 12, 13 and 23) were much more effective than the reference inhibitor verapamil, being potent ABCB1 inhibitors already at 2 µM, while 5 and 15 showed very potent ABCB1 inhibitory activity only at 20 µM. Results of P-gp ATPase assays, supported with docking studies, indicated the competitive substrate mode of modulating action for 15, while ABCB1, ABCC1 and ABCG2 genes expression induction by 15 with q-PCR was confirmed. All compounds were evaluated for their cytotoxic and antiproliferative properties in both sensitive (PAR) and resistant (MDR) mouse T-lymphoma cell lines, and compound 15, also considering its promising ABCB1 inhibition properties, was revealed to be the best compound in terms of its cytotoxic effect (IC50: 16.73 µM) as well as concerning the antiproliferative effect (IC50: 5.35 µM) in MDR cells. Regarding the mechanistic studies looking at the cell cycle, the thioether 15 and selenium derivatives 26 and 29 were significantly effective in the regulation of cell cycle-related genes alone or in co-treatment with doxorubicin counteracting Cyclin D1 and E1 expression and increasing p53 and p21 levels, shedding first light on their mechanism of action. In summary, we explored the chemical space of seleno- and thioether 1,3,5-triazine derivatives with interesting activity against lymphoma. Especially compound 15 is worthy of being studied deeper to evaluate its precise mode of action further as well it can be improved regarding its potency and drug-likeness.


Subject(s)
Antineoplastic Agents , Lymphoma , Mice , Animals , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Sulfides/pharmacology , Drug Resistance, Neoplasm , Neoplasm Proteins , Drug Resistance, Multiple , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Lymphoma/drug therapy , Pharmaceutical Preparations , Triazines/pharmacology , Cell Line, Tumor
8.
Crit Rev Food Sci Nutr ; 62(17): 4607-4621, 2022.
Article in English | MEDLINE | ID: mdl-33523712

ABSTRACT

Nowadays, topics related to the proper nutrition of the body, which requires a complex of compounds and supplementation of these ingredients have undoubtedly gained popularity, so it should come as no surprise that there is a widespread interest in vitamin D in science, medicine, analytics and nutrition. In the world of developing technologies, new directions of physiological action of this vitamin on the body are being discovered. Issues related to the demand for vitamin D in various populations and its sources in food, the appropriate form of supplementation, safety and toxicity are extremely important. The present manuscript focuses on the concise evaluation of key data in the field of vitamin D. Structure and physicochemical properties, demand and delivery trails, deficiency and its diagnosis, supplementation, interactions of vitamin D with supplements and drugs are discussed. Attention has also been paid to the methods of vitamin D analysis in various matrices, which allow for an accurate and precise quality assessment of dietary supplements, drugs and food products. The presented information allows deeper understanding of the mechanisms responsible for the development of many diseases in the context of vitamin D levels.


Subject(s)
Vitamin D Deficiency , Vitamin D , Dietary Supplements , Humans , Nutritional Status , Vitamins
9.
Bioorg Med Chem Lett ; 49: 128318, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34391892

ABSTRACT

Lipophilicity is one of the principal QSAR parameters which influences among others the pharmacodynamics and pharmacokinetic properties of a drug candidates. In this paper, the lipophilicity of 14 amide derivatives of 1,3-dimethyl-2,6-dioxopurin-7-yl-alkylcarboxylic acids as multifunctional TRPA1 channel antagonists and phosphodiesterase 4/7 inhibitors with analgesic activity were investigated, using reversed-phase thin-layer chromatography method. It was observed that the retention behavior of the analyzed compounds was dependent on their structural features i.e. an aliphatic linker length, a kind of substituent at 8 position of purine-2,6-dione scaffold as well as on a substitution in a phenyl group. The experimental parameters (RM0) were compared with computationally calculated partition coefficient values by Principal Component Analysis (PCA). To verify the influence of lipophilic parameter of the investigated compounds on their biological activity the Kruskal-Wallis test was performed. The lowest lipophilicity was observed for the compounds with weak PDE4/7 inhibitory potency. The differences between the lipophilicity of potent inhibitors and inactive compounds were statistically significant. It was found that the presence of more lipophilic propoxy- or butoxy- substituents as well as the elongation of the aliphatic chain to propylene one between the purine-2,6-dione core and amide group were preferable for desired multifunctional activity.


Subject(s)
Analgesics/chemistry , Benzeneacetamides/chemistry , Phosphodiesterase 4 Inhibitors/chemistry , TRPA1 Cation Channel/antagonists & inhibitors , Xanthines/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 7/antagonists & inhibitors , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Phenylbutyrates/chemistry , Principal Component Analysis , Quantitative Structure-Activity Relationship
10.
Molecules ; 26(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208193

ABSTRACT

Metronidazole is a drug widely used in the prevention and treatment of bacterial infections. Due to its possibility of the formation of stable metal complexes, it was decided to broaden its activity spectrum by introducing the silver(I) coordination compounds i.e., [Ag(MTZ)2NO3] and [(Ag(MTZ)2)2]SO4, which have significant antibacterial properties. The paper presents a description of a new qualitative and quantitative analysis of metronidazole in bulk and possible pharmaceutical preparations by thin-layer chromatography with densitometric detection. Optimal separation conditions were selected, and the analytical procedure was validated according to the ICH guidelines. The obtained data indicate that the method is sufficiently sensitive, precise, and accurate. The stability of the metronidazole solutions obtained from tablets, pure metronidazole, and its silver(I) complexes was tested. The research was carried out in various environments, at different temperatures, in H2O2 solution, and during exposure to radiation (UV, sunlight). The greatest degradation was found in the alkaline environment and at higher temperatures. The silver(I) complexes exhibited relatively high stability under analyzed conditions that are higher than standard metronidazole solutions and tablets. The observations were confirmed by the kinetic and thermodynamic analysis. The described studies of new metronidazole silver(I) complexes increase the potential for their application in infections both in humans and animals.


Subject(s)
Anti-Bacterial Agents/chemistry , Coordination Complexes/chemistry , Hydrogen Peroxide/chemistry , Metronidazole/chemistry , Silver Compounds/chemistry , Animals , Chromatography, Thin Layer/methods , Densitometry/methods , Drug Stability , Humans , Kinetics , Tablets
11.
Int J Mol Sci ; 22(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063471

ABSTRACT

The formation of cefuroxime axetil+cyclodextrin (CA+CD) complexes increases the aqueous solubility of CA, improves its physico-chemical properties, and facilitates a biomembrane-mediated drug delivery process. In CD-based tablet formulations, it is crucial to investigate the molecular details of complexes in final pharmaceutical preparation. In this study, Raman spectroscopy and mapping were applied for the detection and identification of chemical groups involved in α-, ß-, γ-, and 2-hydroxypropyl-ß-CD (2-HP- ß-CD)+CA complexation process. The experimental studies have been complemented by molecular dynamics-based investigations, providing additional molecular details of CA+CD interactions. It has been demonstrated that CA forms the guest-host type inclusion complexes with all studied CDs; however, the nature of the interactions is slightly different. It seems that both α- and ß-CD interact with furanyl and methoxy moieties of CA, γ-CD forms a more diverse pattern of interactions with CA, which are not observed in other CDs, whereas 2HP-ß-CD binds CA with the contribution of hydrogen bonding. Apart from supporting this interpretation of the experimental data, molecular dynamics simulations allowed for ordering the CA+CD binding affinities. The obtained results proved that the molecular details of the host-guest complexation can be successfully predicted from the combination of Raman spectroscopy and molecular modeling.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Cefuroxime/analogs & derivatives , Cyclodextrins/chemistry , Spectrum Analysis, Raman , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Cefuroxime/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Vibration
12.
Pharmaceutics ; 13(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805056

ABSTRACT

Lipophilicity study of selected NSAIDs, the group of the bioactive compounds usually used in humans and animals medicine, with the use of experimental and calculation methods was evaluated. LogP values are proposed and compared as descriptors of the lipophilicity of eleven compounds (from oxicams and coxibs). Obtained data were designated by thin-layer chromatography (TLC) in various chromatographic conditions, with stationary phases with different properties. The mobile phase systems were prepared by mixing the respective amounts of water and organic modifier, methanol and acetone, in the range of 30 to 80% (v/v) in 5% increments. Retention parameters (RF, RM and RM0) were calculated and statistically evaluated to establish correlations. All experimentally determined RM0 values were compared with partition coefficients obtained by computational methods using linear regression analysis. Moreover, in order to extract information about the lipophilicity of compounds from large retention datasets, two chemometric approaches, namely principal component analysis (PCA) and cluster analysis (CA) were carried out. Established models of lipophilicity may have the potential to predict the biological activity of a number of drugs. The presented knowledge may also be of use during drug discovery processes, broadening the knowledge of potential ways to modify the physicochemical properties of chemical compounds.

13.
ChemMedChem ; 16(15): 2386-2401, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33929088

ABSTRACT

ABCB1 modulation is an interesting strategy in the search for new anticancer agents that can overcome multidrug resistance (MDR). Hence, 17 new 5-arylideneimidazolones containing an amine moiety, as potential ABCB1 inhibitors, were designed, synthesized, and investigated. The series was tested in both parental (PAR) and multidrug-resistant (MDR) ABCB1-overexpressing T-lymphoma cancer cells using cytotoxicity assays. The ABCB1-modulating activity was examined in rhodamine 123 accumulation tests, followed by Pgp-Glo™ Assay to determine the influence of the most active compounds on ATPase activity. Lipophilic properties were assessed both, in silico and experimentally (RP-TLC). Pharmacophore-based molecular modelling toward ABCB1 modulation was performed. The studies allowed the identification of anticancer agents (p-fluorobenzylidene derivatives) more potent than doxorubicin, with highly selective action on MDR T-lymphoma cells (selectivity index >40). Most of the investigated compounds showed ABCB1-modulating action; in particular, two 5-benzyloxybenzylidene derivatives displayed activity nearly as strong as that of tariquidar.


Subject(s)
Antineoplastic Agents/pharmacology , Computer-Aided Design , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Imidazoles/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mice , Structure-Activity Relationship , Tumor Cells, Cultured
14.
Eur J Med Chem ; 200: 112435, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32505850

ABSTRACT

Multidrug resistance (MDR) in cancer cells is a crucial aspect to consider for a successful cancer therapy. P-gp/ABCB1, a member of ABC transporters, is involved in the main tumour MDR mechanism, responsible for the efflux of drugs and cytotoxic substances. Herein, we describe a discovery of potent selenium-containing ABCB1 MDR efflux pump modulators with promising anticancer activity. On three groups of selenoethers comprehensive studies in terms of design, synthesis, and biological assays, including an insight into cellular mechanisms of anticancer action as well as an ADMET-screening in vitro were performed, followed by in-depth SAR analysis. Among the investigated new phenylselenoether hybrids, four compounds showed significant cytotoxic and anti-proliferative effects, in particular, in resistant cancer cells. Hydantoin derivatives (5-7) were significantly more effective than the reference inhibitor verapamil (up to 2.6-fold at a 10-fold lower concentration) modulating ABCB1-efflux pump, also possessing a good drug-drug interaction profile. The best compound (6) was further evaluated in human JURKAT T-lymphocytic cancer cells for its impact on cell proliferation rate. Mechanistically, the expression of cyclin D1, an enhancer of the cell cycle, decreases, while p53, an inhibitor of cell proliferation, was up-regulated upon the treatment with compound 6 alone or in combination with the chemotherapeutic agent doxorubicin. In summary, a new chemical space of highly active selenium-containing anticancer agents has been discovered, with a new lead compound 6 that warrants more in-depth biological evaluation and further pharmacomodulation.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Ethers/pharmacology , Hydantoins/pharmacology , Lymphoma, T-Cell/drug therapy , Organoselenium Compounds/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Ethers/chemistry , Hydantoins/chemistry , Lymphoma, T-Cell/metabolism , Mice , Molecular Structure , Organoselenium Compounds/chemistry , Structure-Activity Relationship
15.
Front Microbiol ; 10: 313, 2019.
Article in English | MEDLINE | ID: mdl-30846979

ABSTRACT

Pollution of the environment with inorganic and organic substances is one of the main problems in the world. For this reason, it is necessary to conduct researches for effective methods of biodegradation of xenobiotics, including drugs whose unmetabolized forms are introduced into the environment, especially into water. One possible solution to this problem may be the use of white rot fungi, such as Lentinula edodes. This is an edible species used in medicine because of its beneficial anti-cancer, hypocholesterolemic, hypotensive, hypoglycemic and antioxidant effects. Due to the fact that the mycelium of L. edodes produces enzymes with oxidizing properties that can degrade xenobiotics. The aim of the work was verification if in vitro cultures of L. edodes can be used for bioremediation of non-steroidal, anti-inflammatory drug: piroxicam. For this purpose, the in vitro culture of L. edodes was derived and the mycelial cultures of this species enriched with piroxicam were analyzed. The biodegradation pathway of piroxicam by L. edodes mycelium was carried out by the UPLC/MS/MS method. The degradation process of piroxicam was found to affect primarily the linker between the thiazine and the piperidine ring, leading to its oxidation and cleavage. Additionally, oxidation of the benzothiazine moiety was observed, leading to hydroxylation and oxidation of the phenyl ring as well as oxidation of the thiazine ring leading to partial or complete removal of the sulfonamide moiety. It seems that the degradation process led finally to 2-hydroxybenozquinone, which may be further oxidized to inorganic compounds. What's more, concentration of piroxicam in in vitro cultures of L. edodes was not correlated with effectiveness of biodegradation of this compound - on each experimental series, the level of degradation was the same. The results confirm the possibility of using the investigated L. edodes mycelium for remediation of piroxicam.

16.
Molecules ; 23(10)2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30282913

ABSTRACT

This study focuses on the design, synthesis, biological evaluation, and computer-aided structure-activity relationship (SAR) analysis for a novel group of aromatic triazine-methylpiperazines, with an hydantoin spacer between 1,3,5-traizine and the aromatic fragment. New compounds were synthesized and their affinities for serotonin 5-HT6, 5-HT1A, 5-HT2A, 5-HT7, and dopamine D2 receptors were evaluated. The induced-fit docking (IFD) procedure was performed to explore the 5-HT6 receptor conformation space employing two lead structures. It resulted in a consistent binding mode with the activity data. For the most active compounds found in each modification line, anti-obesity and anti-depressive-like activity in vivo, as well as "druglikeness" in vitro, were examined. Two 2-naphthyl compounds (18 and 26) were identified as the most active 5-HT6R agents within each lead modification line, respectively. The 5-(2-naphthyl)hydantoin derivative 26, the most active one in the series (5-HT6R: Ki = 87 nM), displayed also significant selectivity towards competitive G-protein coupled receptors (6⁻197-fold). Docking studies indicated that the hydantoin ring is stabilized by hydrogen bonding, but due to its different orientation, the hydrogen bonds form with S5.44 and N6.55 or Q6.58 for 18 and 26, respectively. Compound 26 exerted anxiolytic-like and antidepressant-like activities. Importantly, it demonstrated anti-obesity properties in animals fed palatable feed, and did not show toxic effects in vitro.


Subject(s)
Hydantoins/chemistry , Receptors, Serotonin/chemistry , Triazines/chemistry , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/therapeutic use , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/therapeutic use , Antidepressive Agents/chemistry , Antidepressive Agents/therapeutic use , Humans , Ligands , Molecular Structure , Serotonin/chemistry , Serotonin/metabolism , Structure-Activity Relationship , Triazines/chemical synthesis , Triazines/therapeutic use
17.
J Enzyme Inhib Med Chem ; 33(1): 536-545, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29482394

ABSTRACT

Despite the substantial clinical success of aspirin and clopidogrel in secondary prevention of ischemic stroke, up to 40% of patients remain resistant to the available antiplatelet treatment. Therefore, there is an urgent clinical need to develop novel antiplatelet agents with a novel mechanism of action. Recent studies revealed that potent alpha 2B-adrenergic receptor (alpha 2B-ARs) antagonists could constitute alternative antiplatelet therapy. We have synthesized a series of N-arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potential alpha 2B receptor antagonists. The most potent compound 3, effectively inhibited the platelet-aggregation induced both by collagen and ADP/adrenaline with IC50 of 26.9 µM and 20.5 µM respectively. Our study confirmed that the alpha 2B-AR antagonists remain an interesting target for the development of novel antiplatelet agents with an alternative mechanism of action.


Subject(s)
Isoquinolines/pharmacology , Piperazines/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Receptors, Adrenergic, alpha-2/metabolism , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Piperazine , Piperazines/chemical synthesis , Piperazines/chemistry , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/chemistry , Platelet Function Tests , Structure-Activity Relationship
18.
Eur J Pharm Sci ; 101: 115-124, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28137472

ABSTRACT

The retention behaviors were investigated for a series of eight cephalosporins in thin-layer chromatography (TLC) using stationary phases of RP-2, RP-8, RP-18, NH2, DIOL, and CN chemically bonded silica gel. Additionally, various binary mobile phases (water/methanol and water/acetone) were used in different volume proportions. The retention behavior of the analyzed molecules was defined by RM0 constant. In addition, reversed phase high performance liquid chromatography (RP-HPLC) was performed in lipophilicity studies by using immobilized artificial membrane (IAM) stationary phase. Obtained chromatographic data (RM0 and logk'IAM) were correlated with the lipophilicity, expressed as values of the log calculated (logPcalc) and experimental (logPexp(shake-flask)) partition coefficient. Principal component analysis (PCA) was applied in order to obtain an overview of similarity or dissimilarity among the analyzed compounds. Hierarchical cluster analysis (HCA) was performed to compare the separation characteristics of the applied stationary phases. This study was undertaken to identify the best chromatographic system and chromatographic data processing method to enable the prediction of logP values. A comprehensive chromatographic investigation into the retention of the analyzed cephalosporins revealed a similar behavior on RP-18, RP-8 and CN stationary phases. The weak correlations obtained between experimental and certain computed lipophilicity indices revealed that RM0 and PC1/RM are relevant lipophilicity parameters and the RP-8, CN and RP-18 plates are appropriate stationary phases for lipophilicity investigation, whereas computational approaches still cannot fully replace experimentation.


Subject(s)
Cephalosporins/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Chromatography, Thin Layer/methods , Hydrophobic and Hydrophilic Interactions , Methanol/chemistry , Principal Component Analysis , Water/chemistry
19.
Biomed Chromatogr ; 29(3): 388-95, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25042047

ABSTRACT

A rapid, accurate and sensitive thin-layer chromatography (TLC) method with densitometric detection has been developed and validated for the determination of cefepime in pharmaceuticals. Chromatographic separation was achieved on a silica gel TLC F254 plates with a mobile phase consisting of ethanol-2-propanol-glacial acetic acid 99.5%-water (4:4:1:3, v/v). Densitometric detection was carried out at wavelength of 266 nm in reflectance/absorbance mode. The validation of the method was found to be satisfactory with high accuracy (from 99.24 to 101.37%) and precision (RSD from 0.06 to 0.36%). Additionally, the stability of cefepime in solution was investigated, including the effect of pH, temperature and incubation time. Favorable retention parameters (Rf , Rs, α) were obtained under the developed conditions, which guaranteed good separation of the studied components. The degradation process of cefepime hydrochloride was described by kinetic and thermodynamic parameters (k, t0.1 , t0.5 and Ea ). Moreover, the chemical properties of degradation products were characterized by the Rf values, absorption spectra, HPLC-MS/MS and TLC-densitometry analysis. As the method could effectively separate the active substance from its main degradation product (1-methylpyrrolidine), it can be employed as a method to indicate the stability of this drug.


Subject(s)
Cephalosporins/analysis , Cephalosporins/chemistry , Chromatography, Thin Layer/methods , Densitometry/methods , Cefepime , Chromatography, High Pressure Liquid , Drug Stability , Hydrogen-Ion Concentration , Kinetics , Limit of Detection , Pyrrolidines/analysis , Reproducibility of Results , Sensitivity and Specificity , Solutions , Tandem Mass Spectrometry , Temperature , Thermodynamics
20.
Food Chem ; 142: 220-32, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24001835

ABSTRACT

l-Carnitine is a vitamin-like amino acid derivative, which is an essential factor in fatty acid metabolism as acyltransferase cofactor and in energy production processes, such as interconversion in the mechanisms of regulation of cetogenesis and termogenesis, and it is also used in the therapy of primary and secondary deficiency, and in other diseases. The determination of carnitine and acyl-carnitines can provide important information about inherited or acquired metabolic disorders, and for monitoring the biochemical effect of carnitine therapy. The endogenous carnitine pool in humans is maintained by biosynthesis and absorption of carnitine from the diet. Carnitine has one asymmetric carbon giving two stereoisomers d and l, but only the l form has a biological positive effect, thus chiral recognition of l-carnitine enantiomers is extremely important in biological, chemical and pharmaceutical sciences. In order to get more insight into carnitine metabolism and synthesis, a sensitive analysis for the determination of the concentration of free carnitine, carnitine esters and the carnitine precursors is required. Carnitine has been investigated in many biochemical, pharmacokinetic, metabolic and toxicokinetic studies and thus many analytical methods have been developed and published for the determination of carnitine in foods, dietary supplements, pharmaceutical formulations, biological tissues and body fluid. The analytical procedures presented in this review have been validated in terms of basic parameters (linearity, limit of detection, limit of quantitation, sensitivity, accuracy, and precision). This article presented the impact of different analytical techniques, and provides an overview of applications that address a diverse array of pharmaceutical and biological questions and samples.


Subject(s)
Carnitine/analysis , Chemistry Techniques, Analytical/methods , Dietary Supplements/analysis , Food Analysis , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...