Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(17): 8836-8842, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38634602

ABSTRACT

Halide perovskite thin films can be the centerpiece of high-performance solar cells, light-emitting diodes, and other optoelectronic devices if the films are of high uniformity and relatively free of pinholes and other defects. A common strategy to form dense films from solution has been to generate a high density of nuclei by rapidly increasing supersaturation, for example, by timely application of an antisolvent or forced convection. In this work, we examine the role of retrograde solubility, wherein solubility decreases with increasing temperature, as a means of increasing the nucleation density and film coverage of slot-die-coated methylammonium lead iodide (MAPbI3) from γ-butyrolactone (GBL) solution. Coverage was investigated as a function of the substrate temperature and the presence and temperature of an air knife. Results were considered within the framework of the dimensionless modified Biot number, which quantifies the interplay between evaporation and horizontal diffusion. Moderate temperatures and a heated air knife improved film coverage and morphology by enhanced nucleation up to ∼80 °C. However, despite the dense nucleation enabled by retrograde solubility, slow evaporation as a result of the low vapor pressure of GBL, combined with Ostwald ripening at high temperatures, prevented the deposition of void-free, device-quality films. This work has provided a more detailed understanding of the interplay between perovskite processing, solvent parameters, and film morphology and ultimately indicates the obstacles to forming dense, uniform films from solvents with high boiling points even in the presence of rapid nucleation.

2.
Langmuir ; 39(46): 16231-16243, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37939230

ABSTRACT

The microstructure of solid coatings produced by solution processing is highly dependent on the coupling between growth, solute diffusion, and solvent evaporation. Here, a quasi-2D numerical model coupling drying and solidification is used to predict the transient lateral growth of two adjacent nuclei growing toward each other. Lateral gradients of the solute and solvent influence the evolution of film thickness and solid growth rate. The important process parameters and solvent properties are captured by the dimensionless Peclet number (Pe) and the Biot number (Bi), modified by an aspect ratio defined by the film thickness and distance between nuclei. By variation of Pe and Bi, the evaporation dynamics and aspect ratio are shown to largely determine the coating quality. These findings are applied to drying thin films of crystallizing halide perovskites, demonstrating a convenient process map for capturing the relationship between the modified Bi and well-defined coating regimes, which may be generalized for any solution-processed thin film coating systems.

3.
Biomacromolecules ; 17(7): 2427-36, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27351270

ABSTRACT

We report a robust method to manufacture polyacrylamide-based functional hydrogel microspheres with readily tunable macroporous structures by utilizing a simple micromolding-based technique. Specifically, surface tension-induced droplet formation of aqueous solutions of chitosan and acrylamide in 2D-shaped micromolds followed by photoinduced polymerization leads to monodisperse microspheres. Pore sizes of the microspheres can be readily tuned by simple addition of inert long-chain poly(ethylene glycol) porogen at low content in the prepolymer solution. The as-prepared chitosan-polyacrylamide microspheres exhibit chemical functionality through chitosan's primary amines, rapid protein conjugation with selective tetrazine-trans-cyclooctene reaction, and nonfouling property. Combined with the potential to create anisotropic network structures, we envision that our simple fabrication-conjugation method would offer a potent route to manufacture a variety of biofunctionalized hydrogel microentities.


Subject(s)
Acrylic Resins/chemistry , Chitosan/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microspheres , Proteins/chemistry , Humans , Polymerization , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...