Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 277(3): 605-20, 1998 Apr 03.
Article in English | MEDLINE | ID: mdl-9533883

ABSTRACT

The solution structure of a complex between the DNA binding domain of a fungal GATA factor and a 13 base-pair oligonucleotide containing its physiologically relevant CGATAG target sequence has been determined by multidimensional nuclear magnetic resonance spectroscopy. The AREA DNA binding domain, from Aspergillus nidulans, possesses a single Cys2-Cys2 zinc finger module and a basic C-terminal tail, which recognize the CGATAG element via an extensive network of hydrophobic interactions with the bases in the major groove and numerous non-specific contacts along the sugar-phosphate backbone. The zinc finger core of the AREA DNA binding domain has the same global fold as that of the C-terminal DNA binding domain of chicken GATA-1. In contrast to the complex with the DNA binding domain of GATA-1 in which the basic C-terminal tail wraps around the DNA and lies in the minor groove, the structure of complex with the AREA DNA binding domain reveals that the C-terminal tail of the fungal domain runs parallel with the sugar phosphate backbone along the edge of the minor groove. This difference is principally attributed to amino acid substitutions at two positions of the AREA DNA binding domain (Val55, Asn62) relative to that of GATA-1 (Gly55, Lys62). The impact of the different C-terminal tail binding modes on the affinity and specificity of GATA factors is discussed.


Subject(s)
Aspergillus nidulans/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Fungal Proteins/chemistry , Transcription Factors/chemistry , Zinc Fingers , Amino Acid Sequence , Binding Sites , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Erythroid-Specific DNA-Binding Factors , Fungal Proteins/genetics , Fungal Proteins/metabolism , GATA1 Transcription Factor , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis , Nucleic Acid Conformation , Protein Conformation , Sequence Homology, Amino Acid , Solutions , Transcription Factors/genetics , Transcription Factors/metabolism
2.
J Mol Biol ; 277(3): 621-34, 1998 Apr 03.
Article in English | MEDLINE | ID: mdl-9533884

ABSTRACT

The seemingly innocuous leucine-to-valine mutation at position 22 of the AREA DNA binding domain results in dramatic changes in the in vivo expression profile of genes controlled by this GATA transcription factor. This is associated with a preference of the Leu22-->Val mutant for TGATAG sites over (A/C)GATAG sites. Quantitative gel retardation assays confirm this observation and show that the Leu22-->Val mutant AREA DNA binding domain has a approximately 30-fold lower affinity than the wild-type domain for a 13 base-pair oligonucleotide containing the wild-type CGATAG target. To gain insight into the measured affinity data and further explore sequence specificity of the AREA protein, the solution structure of a complex between the Leu22-->Val mutant AREA DNA binding domain and a 13 base-pair oligonucleotide containing its physiologically relevant TGATAG target sequence has been determined by multidimensional nuclear magnetic resonance spectroscopy. Comparison of this structure with that of the wild-type AREA DNA binding domain complexed to its cognate CGATAG target site shows how subtle changes in amino acid side-chain length and hydrophobic packing can affect affinity and specificity for GATA-containing sequences, and how changes in DNA sequence can be compensated for by changes in protein sequence.


Subject(s)
Aspergillus nidulans/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Fungal Proteins/chemistry , Leucine/chemistry , Transcription Factors/chemistry , Valine/chemistry , Zinc Fingers , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Binding Sites , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Leucine/genetics , Leucine/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Protein Conformation , Solutions , Transcription Factors/genetics , Transcription Factors/metabolism , Valine/genetics , Valine/metabolism
3.
Biochemistry ; 35(36): 11577-88, 1996 Sep 10.
Article in English | MEDLINE | ID: mdl-8794737

ABSTRACT

S100B(beta beta), a member of the S100 protein family, is a Ca(2+)-binding protein with noncovalent interactions at its dimer interface. Each apo-S100 beta subunit (91 residues) has four alpha-helices and a small antiparallel beta-sheet, consistent with two predicted helix-loop-helix Ca(2+)-binding domains known as EF-hands [Amburgey et al. (1995) J. Biomol. NMR 6, 171-179]. The three-dimensional solution structure of apo-S100B(beta beta) from rat has been determined using 2672 distance (14.7 per residue) and 88 dihedral angle restraints derived from multidimensional nuclear magnetic resonance spectroscopy. Apo-S100B (beta beta) is found to be globular and compact with an extensive hydrophobic core and a highly charged surface, consistent with its high solubility. At the symmetric dimer interface, 172 intermolecular nuclear Overhauser effect correlations (NOEs) define the antiparallel alignment of helix I with I' and of helix IV with IV'. The perpendicular association of these pairs of antiparallel helices forms an X-type four-helical bundle at the dimer interface. Whereas, the four helices within each apo-S100 beta subunit adopt a unicornate-type four-helix bundle, with helix I protruding from the parallel bundle of helices II, III, and IV. Accordingly, the orientation of helix III relative to helices I, II, and IV in each subunit differs significantly from that known for other Ca(2+)-binding proteins. Indeed, the interhelical angle (omega) observed in the C-terminal EF-hand of apo-S100 beta is -142 degrees, whereas omega ranges from 118 degrees to 145 degrees in the apo state and from 84 degrees to 128 degrees in the Ca(2+)-bound state for the EF-hands of calbindin D9k, calcyclin, and calmodulin. Thus, a significant conformational change in the C-terminal EF-hand would be required for it to adopt a structure typical of the Ca(2+)-bound state, which could readily explain the dramatic spectral effects observed upon the addition of Ca2+ to apo-S100B(beta beta).


Subject(s)
Apoproteins/chemistry , Calcium-Binding Proteins/chemistry , Protein Conformation , S100 Proteins/chemistry , Amino Acid Sequence , Animals , Calbindins , Calcium/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Nerve Growth Factors , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , S100 Calcium Binding Protein G/chemistry , S100 Calcium Binding Protein beta Subunit , Sequence Alignment
4.
J Mol Biol ; 255(1): 187-203, 1996 Jan 12.
Article in English | MEDLINE | ID: mdl-8568866

ABSTRACT

The three-dimensional structure of the recombinant histone rHMfB from Methanothermus fervidus, an archaeon that grows optimally at 83 degrees C, has been determined by nuclear magnetic resonance methods. This is only the third structure of a protein from a hyperthermophilic organism (optimal growth at temperatures above 80 degrees C). Signal assignments were made using a combination of homonuclear-correlated, 15N-double resonance and 15N, 13C triple resonance NMR experiments. Long range dipolar interactions for the symmetric homodimer were identified from two-dimensional 13C-double half-filtered and three-dimensional 13C-filtered NMR data obtained for a heterolabeled-dimer. A family of 33 structures was calculated using DSPACE with a total of 609 NOE-derived interproton distance restraints, including 22 intraresidue, 192 sequential, 300 medium-range (two to five residues), 86 long-range intramolecular (more than five residues) and 112 intermolecular distance restraints. The monomer subunits consist of three alpha-helices, extending from residues Pro4 to Ala15 (helix I), Ser21 to Ala50 (helix II) and Lys56 to Lys68 (helix III), as well as two short segments of beta-strand comprised of residues Arg19 to Ser21 and Thr54 to Ile55. Helices I, II and III contain N-terminal capping boxes, and helices I and II contain C-terminal caps. The structure of the (rHMfB)2 dimer appears very similar to the dimer subunits within the histone core octamer of the chicken nucleosome. The presence of a canonical "histone fold" motif in rHMfB is consistent with the HMf family of archaeal histones and the eukaryal nucleosome core histones having evolved from a common ancestor. The (rHMfB)2 dimer contains several structural features that may impart thermal stability (or non-lability), including two novel hydrophobic "proline Ncaps", four interhelical hydrogen bonds and short N- and C-terminal disordered tails.


Subject(s)
Archaeal Proteins , DNA-Binding Proteins/chemistry , Euryarchaeota/chemistry , Histones/chemistry , Amino Acid Sequence , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/chemistry
5.
J Biomol NMR ; 6(2): 171-9, 1995 Sep.
Article in English | MEDLINE | ID: mdl-8589606

ABSTRACT

The 1H, 13C and 15N NMR assignments of the backbone and side-chain resonances of rat S100 beta were made at pH 6.5 and 37 degrees C using heteronuclear multidimensional NMR spectroscopy. Analysis of the NOE correlations, together with amide exchange rate and 1H alpha, 13C alpha and 13C beta chemical shift data, provided extensive secondary structural information. Thus, the secondary structure of S100 beta was determined to comprise four helices (Leu3-Ser18, helix I; Lys29-Leu40, helix II; Gln50-Glu62, helix III; and Phe70-Ala83, helix IV), four loops (Gly19-His25, loop I; Ser41-Glu49, loop II; Asp63-Gly66, loop III; and Cys84-Glu91, loop IV) and two beta-strands (Lys26-Lys28, beta-strand I and Glu67-Asp69, beta-strand II). The beta-strands were found to align in an antiparallel manner to form a very small beta-sheet. This secondary structure is consistent with predictions that S100 beta contains two 'helix-loop-helix' Ca(2+)-binding motifs known as EF-hands. The alignment of the beta-sheet, which brings the two EF-hand domains of S100 beta into close proximity, is similar to that of several other Ca(2+)-ion-binding proteins.


Subject(s)
Calcium-Binding Proteins/chemistry , Magnetic Resonance Spectroscopy , Nerve Growth Factors/chemistry , Protein Structure, Secondary , S100 Proteins , Amino Acid Sequence , Animals , Carbon Isotopes , Consensus Sequence , Hydrogen , Molecular Sequence Data , Nitrogen Isotopes , Rats , Recombinant Proteins/chemistry , S100 Calcium Binding Protein beta Subunit , Sequence Alignment , Sequence Homology, Amino Acid
6.
J Mol Biol ; 244(2): 198-223, 1994 Nov 25.
Article in English | MEDLINE | ID: mdl-7966331

ABSTRACT

The HIV-1 matrix protein forms an icosahedral shell associated with the inner membrane of the mature virus. Genetic analyses have indicated that the protein performs important functions throughout the viral life-cycle, including anchoring the transmembrane envelope protein on the surface of the virus, assisting in viral penetration, transporting the proviral integration complex across the nuclear envelope, and localizing the assembling virion to the cell membrane. We now report the three-dimensional structure of recombinant HIV-1 matrix protein, determined at high resolution by nuclear magnetic resonance (NMR) methods. The HIV-1 matrix protein is the first retroviral matrix protein to be characterized structurally and only the fourth HIV-1 protein of known structure. NMR signal assignments required recently developed triple-resonance (1H, 13C, 15N) NMR methodologies because signals for 91% of 132 assigned H alpha protons and 74% of the 129 assignable backbone amide protons resonate within chemical shift ranges of 0.8 p.p.m. and 1 p.p.m., respectively. A total of 636 nuclear Overhauser effect-derived distance restraints were employed for distance geometry-based structure calculations, affording an average of 13.0 NMR-derived distance restraints per residue for the experimentally constrained amino acids. An ensemble of 25 refined distance geometry structures with penalties (sum of the squares of the distance violations) of 0.32 A2 or less and individual distance violations under 0.06 A was generated; best-fit superposition of ordered backbone heavy atoms relative to mean atom positions afforded root-mean-square deviations of 0.50 (+/- 0.08) A. The folded HIV-1 matrix protein structure is composed of five alpha-helices, a short 3(10) helical stretch, and a three-strand mixed beta-sheet. Helices I to III and the 3(10) helix pack about a central helix (IV) to form a compact globular domain that is capped by the beta-sheet. The C-terminal helix (helix V) projects away from the beta-sheet to expose carboxyl-terminal residues essential for early steps in the HIV-1 infectious cycle. Basic residues implicated in membrane binding and nuclear localization functions cluster about an extruded cationic loop that connects beta-strands 1 and 2. The structure suggests that both membrane binding and nuclear localization may be mediated by complex tertiary structures rather than simple linear determinants.


Subject(s)
Gene Products, gag/chemistry , HIV Antigens/chemistry , Viral Proteins , Amino Acid Sequence , Cell Membrane/metabolism , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship , gag Gene Products, Human Immunodeficiency Virus
SELECTION OF CITATIONS
SEARCH DETAIL
...