Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 24(17): e202300290, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37167138

ABSTRACT

Alcohol dehydrogenases (ADH) are important tools for generating chiral α-hydroxyketones. Previously, only the ADH of Thauera aromatica was known to convert cyclic α-diketones with appropriate preference. Here, we extend the spectrum of suitable enzymes by three alcohol dehydrogenases from Citrifermentans bemidjiense (CibADH), Deferrisoma camini (DecADH), and Thauera phenylacetica (ThpADH). Of these, DecADH is characterized by very high thermostability; CibADH and ThpADH convert α-halogenated cyclohexanones with increased activity. Otherwise, however, the substrate spectrum of all four ADHs is highly conserved. Structural considerations led to the conclusion that conversion of diketones requires not only the expansion of the active site into a large binding pocket, but also the circumferential modification of almost all amino acid residues that form the first shell of the binding pocket. The constellation appears to be overall highly specific for the relative positioning of the carbonyl functions and the size of the C-ring.


Subject(s)
Alcohol Dehydrogenase , Zinc , Amino Acid Sequence , Zinc/chemistry , Alcohol Dehydrogenase/metabolism , Catalytic Domain , Amino Acids , Ketones
2.
Chembiochem ; 23(15): e202200149, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35557486

ABSTRACT

The asymmetric reduction of ketones to chiral hydroxyl compounds by alcohol dehydrogenases (ADHs) is an established strategy for the provision of valuable precursors for fine chemicals and pharmaceutics. However, most ADHs favor linear aliphatic and aromatic carbonyl compounds, and suitable biocatalysts with preference for cyclic ketones and diketones are still scarce. Among the few candidates, the alcohol dehydrogenase from Thauera aromatica (ThaADH) stands out with a high activity for the reduction of the cyclic α-diketone 1,2-cyclohexanedione to the corresponding α-hydroxy ketone. This study elucidates catalytic and structural features of the enzyme. ThaADH showed a remarkable thermal and pH stability as well as stability in the presence of polar solvents. A thorough description of the substrate scope combined with the resolution and description of the crystal structure, demonstrated a strong preference of ThaADH for cyclic α-substituted cyclohexanones, and indicated structural determinants responsible for the unique substrate acceptance.


Subject(s)
Alcohol Dehydrogenase , Thauera , Alcohol Dehydrogenase/chemistry , Catalysis , Ketones/chemistry , Substrate Specificity , Thauera/metabolism , Zinc
3.
Front Microbiol ; 12: 729289, 2021.
Article in English | MEDLINE | ID: mdl-34777277

ABSTRACT

Wildfires represent a fundamental and profound disturbance in many ecosystems, and their frequency and severity are increasing in many regions of the world. Fire affects soil by removing carbon in the form of CO2 and transforming remaining surface carbon into pyrolyzed organic matter (PyOM). Fires also generate substantial necromass at depths where the heat kills soil organisms but does not catalyze the formation of PyOM. Pyronema species strongly dominate soil fungal communities within weeks to months after fire. However, the carbon pool (i.e., necromass or PyOM) that fuels their rise in abundance is unknown. We used a Pyronema domesticum isolate from the catastrophic 2013 Rim Fire (CA, United States) to ask whether P. domesticum is capable of metabolizing PyOM. Pyronema domesticum grew readily on agar media where the sole carbon source was PyOM (specifically, pine wood PyOM produced at 750°C). Using RNAseq, we investigated the response of P. domesticum to PyOM and observed a comprehensive induction of genes involved in the metabolism and mineralization of aromatic compounds, typical of those found in PyOM. Lastly, we used 13C-labeled 750°C PyOM to demonstrate that P. domesticum is capable of mineralizing PyOM to CO2. Collectively, our results indicate a robust potential for P. domesticum to liberate carbon from PyOM in post-fire ecosystems and return it to the bioavailable carbon pool.

SELECTION OF CITATIONS
SEARCH DETAIL
...