Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Neuroendocrinol ; 36(6): e13382, 2024 06.
Article in English | MEDLINE | ID: mdl-38468186

ABSTRACT

Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.


Subject(s)
Feeding Behavior , Neurosecretory Systems , Olfactory Bulb , Olfactory Bulb/physiology , Olfactory Bulb/metabolism , Animals , Humans , Neurosecretory Systems/physiology , Neurosecretory Systems/metabolism , Feeding Behavior/physiology , Smell/physiology , Energy Metabolism/physiology
2.
Mol Metab ; 78: 101826, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898450

ABSTRACT

OBJECTIVE: The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability. METHODS: We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons. RESULTS: The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area. CONCLUSIONS: Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.


Subject(s)
Eating , Ghrelin , Mice , Animals , Ghrelin/metabolism , Agouti-Related Protein/metabolism , Dopamine/metabolism , Neurons/metabolism
3.
Mol Metab ; 77: 101803, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690518

ABSTRACT

OBJECTIVE: An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS: To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS: A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS: Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.

4.
Diabetes Obes Metab ; 25(5): 1213-1220, 2023 05.
Article in English | MEDLINE | ID: mdl-36597795

ABSTRACT

AIMS: To examine association of liver-expressed antimicrobial peptide 2 (LEAP2), an endogenous ghrelin antagonist with anorexiant effects, to key cardiometabolic risk factors in people with overweight and obesity. METHODS: In this cross-sectional study, we sought to identify associations between LEAP2 levels and cardiometabolic risk factors, including body composition (dual X-ray absorptiometry), insulin and glucose metabolism (oral and intravenous glucose tolerance tests and hyperinsulinaemic-euglycaemic clamps), plasma lipids and inflammation markers (ELISA and multiplex assays). RESULTS: In 65 participants with overweight or obesity (63.1% male, mean age 31.3 ± 8.5 years), LEAP2 levels were associated with total body fat, but not with body mass index or waist-hip ratio in both univariable and age- and sex-adjusted models (P < 0.05). Higher LEAP2 level was also positively associated with higher insulin secretion in univariable (P = 0.047) and multivariable models adjusted for age, sex and body fat (P = 0.03), but not with fasting glucose levels (P ≥ 0.05). Higher LEAP2 levels were associated insulin resistance (P = 0.07) after adjustment for age and sex, but the association disappeared after an additional adjustment for body fat (P = 0.2). There was an inverse association between LEAP2 levels and nuclear factor kappa-B (NFκB) activity in the peripheral blood mononuclear cells in age-, sex- and body fat-adjusted models (P = 0.04). There were no associations with cardiovascular risk factors (lipids, blood pressure) or other inflammation markers. CONCLUSIONS: These results provide important insights into the association between LEAP2 and cardiometabolic health in a high-risk population of individuals with overweight and obesity. This is a first report of an association between LEAP2 and insulin secretion, insulin sensitivity and NFκB activity. LEAP2 may represent an important potential therapeutic target to promote insulin secretion in people with type 2 diabetes and obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Obesity , Overweight , Adult , Female , Humans , Male , Young Adult , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Hepcidins/metabolism , Inflammation/complications , Insulin/metabolism , Insulin Secretion , Leukocytes, Mononuclear/metabolism , Lipids , Obesity/complications , Overweight/complications
5.
Biol Psychiatry ; 93(4): 309-321, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36400605

ABSTRACT

BACKGROUND: A greater understanding of how the brain controls appetite is fundamental to developing new approaches for treating diseases characterized by dysfunctional feeding behavior, such as obesity and anorexia nervosa. METHODS: By modeling neural network dynamics related to homeostatic state and body mass index, we identified a novel pathway projecting from the medial prefrontal cortex (mPFC) to the lateral hypothalamus (LH) in humans (n = 53). We then assessed the physiological role and dissected the function of this mPFC-LH circuit in mice. RESULTS: In vivo recordings of population calcium activity revealed that this glutamatergic mPFC-LH pathway is activated in response to acute stressors and inhibited during food consumption, suggesting a role in stress-related control over food intake. Consistent with this role, inhibition of this circuit increased feeding and sucrose seeking during mild stressors, but not under nonstressful conditions. Finally, chemogenetic or optogenetic activation of the mPFC-LH pathway is sufficient to suppress food intake and sucrose seeking in mice. CONCLUSIONS: These studies identify a glutamatergic mPFC-LH circuit as a novel stress-sensitive anorexigenic neural pathway involved in the cortical control of food intake.


Subject(s)
Feeding Behavior , Hypothalamic Area, Lateral , Prefrontal Cortex , Stress, Psychological , Animals , Humans , Mice , Feeding Behavior/physiology , Hypothalamic Area, Lateral/physiology , Prefrontal Cortex/physiology , Stress, Psychological/physiopathology
6.
Elife ; 112022 01 12.
Article in English | MEDLINE | ID: mdl-35018884

ABSTRACT

Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgPP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.


Subject(s)
Agouti-Related Protein/genetics , Corpus Striatum/physiology , Dopamine/physiology , Homeostasis , Neurons/physiology , Signal Transduction , Agouti-Related Protein/metabolism , Animals , Mice , Mice, Knockout
7.
Nutrients ; 13(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200678

ABSTRACT

Food homeostatic states (hunger and satiety) influence the cognitive systems regulating impulsive responses, but the direction and specific mechanisms involved in this effect remain elusive. We examined how fasting, and satiety, affect cognitive mechanisms underpinning disinhibition using a novel framework and a gamified test-battery. Thirty-four participants completed the test-battery measuring three cognitive facets of disinhibition: attentional control, information gathering and monitoring of feedback, across two experimental sessions: one after overnight fasting and another after a standardised meal. Homeostatic state was assessed using subjective self-reports and biological markers (i.e., blood-derived liver-expressed antimicrobial protein 2 (LEAP-2), insulin and leptin). We found that participants who experienced greater subjective hunger during the satiety session were more impulsive in the information gathering task; results were not confounded by changes in mood or anxiety. Homeostatic state did not significantly influence disinhibition mechanisms linked to attentional control or feedback monitoring. However, we found a significant interaction between homeostatic state and LEAP-2 on attentional control, with higher LEAP-2 associated with faster reaction times in the fasted condition only. Our findings indicate lingering hunger after eating increases impulsive behaviour via reduced information gathering. These findings identify a novel mechanism that may underpin the tendency to overeat and/or engage in broader impulsive behaviours.


Subject(s)
Cognition/physiology , Homeostasis , Hunger/physiology , Neuropsychological Tests , Adolescent , Adult , Antimicrobial Cationic Peptides/metabolism , Appetite/physiology , Attention/physiology , Blood Proteins/metabolism , Decision Making , Feedback , Female , Hormones/metabolism , Humans , Male , Satiation , Young Adult
8.
Elife ; 102021 03 29.
Article in English | MEDLINE | ID: mdl-33779547

ABSTRACT

Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.


Obesity and anorexia nervosa are two health conditions related to food intake. Researchers studying these disorders in animal models need to both measure food intake and assess behavioural factors: that is, why animals seek and consume food. Measuring an animal's food intake is usually done by weighing food containers. However, this can be inaccurate due to the small amount of food that rodents eat. As for studying feeding motivation, this can involve calculating the number of times an animal presses a lever to receive a food pellet. These tests are typically conducted in hour-long sessions in temporary testing cages, called operant boxes. Yet, these tests only measure a brief period of a rodent's life. In addition, it takes rodents time to adjust to these foreign environments, which can introduce stress and may alter their feeding behaviour. To address this, Matikainen-Ankney, Earnest, Ali et al. developed a device for monitoring food intake and feeding behaviours around the clock in rodent home cages with minimal experimenter intervention. This 'Feeding Experimentation Device' (FED3) features a pellet dispenser and two 'nose-poke' sensors to measure total food intake, as well as motivation for and learning about food rewards. The battery-powered, wire-free device fits in standard home cages, enabling long-term studies of feeding behaviour with minimal intervention from investigators and less stress on the animals. This means researchers can relate data to circadian rhythms and meal patterns, as Matikainen-Ankney did here. Moreover, the device software is open-source so researchers can customise it to suit their experimental needs. It can also be programmed to synchronise with other instruments used in animal experiments, or across labs running the same behavioural tasks for multi-site studies. Used in this way, it could help improve reproducibility and reliability of results from such studies. In summary, Matikainen-Ankney et al. have presented a new practical solution for studying food-related behaviours in mice and rats. Not only could the device be useful to researchers, it may also be suitable to use in educational settings such as teaching labs and classrooms.


Subject(s)
Animal Husbandry , Conditioning, Operant , Equipment Design/instrumentation , Feeding Behavior , Housing, Animal , Rodentia/physiology , Animals , Eating , Female , Male , Mice
9.
Cell Metab ; 32(5): 751-766.e11, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33147485

ABSTRACT

The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2-/- mice. Unlike other clinical secretagogues, PK activation enhanced insulin secretion but also had higher insulin content and markers of differentiation. In addition to improving insulin secretion, acute PK activation short-circuited gluconeogenesis to reduce endogenous glucose production while accelerating red blood cell glucose turnover. Four-week delivery of a PK activator in vivo remodeled PK phosphorylation, reduced liver fat, and improved hepatic and peripheral insulin sensitivity in HFD-fed rats. These data provide a preclinical rationale for PK activation to accelerate the PEP cycle to improve metabolic homeostasis and insulin sensitivity.


Subject(s)
Mitochondria/metabolism , Phosphoenolpyruvate/metabolism , Animals , Homeostasis , Insulin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyruvate Kinase/metabolism , Rats , Rats, Sprague-Dawley
10.
Cell Rep Med ; 1(7): 100120, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33103129

ABSTRACT

Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl transferase-null (GOAT-/-) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients, and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic biomarker of dementia.


Subject(s)
Acyltransferases/genetics , Ghrelin/analogs & derivatives , Ghrelin/genetics , Hippocampus/metabolism , Membrane Proteins/genetics , Parkinson Disease/genetics , Supranuclear Palsy, Progressive/genetics , Acyltransferases/deficiency , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cognition/physiology , Disease Models, Animal , Female , Gene Expression Regulation , Ghrelin/metabolism , Hippocampus/pathology , Humans , Male , Membrane Proteins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Primary Cell Culture , Rats , Signal Transduction , Spatial Memory/physiology , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology
11.
J Neuroendocrinol ; 31(7): e12696, 2019 07.
Article in English | MEDLINE | ID: mdl-30742723

ABSTRACT

Information about metabolic status arrives in the brain in the form of a complex milieu of circulating signalling factors, including glucose and fatty acids, ghrelin, leptin and insulin. The specific interactions between humoural factors, brain sites of action and how they influence behaviour are largely unknown. We have previously observed interactions between glucose availability and the actions of ghrelin mediated via the agouti-related peptide neurones of the hypothalamus. In the present study, we examine whether these effects generalise to another ghrelin-sensitive brain nucleus, the ventral tegmental area (VTA). We altered glucose availability by injecting mice with glucose or 2-deoxyglucose i.p. to induce hyperglycaemia and glucopenia, respectively. Thirty minutes later, we injected ghrelin in the VTA. Glucose administration suppressed intra-VTA ghrelin-induced feeding. Leptin, a longer-term signal of positive energy balance, did not affect intra-VTA ghrelin-induced feeding. 2-Deoxyglucose and ghrelin both increased food intake in their own right and, together, they additively increased feeding. These results add support to the idea that calculation of metabolic need depends on multiple signals across multiple brain regions and identifies that VTA circuits are sensitive to the integration of signals reflecting internal homeostatic state and influencing food intake.


Subject(s)
Eating/physiology , Ghrelin/physiology , Glucose/administration & dosage , Ventral Tegmental Area/physiology , Animals , Blood Glucose/drug effects , Deoxyglucose/administration & dosage , Eating/drug effects , Ghrelin/administration & dosage , Mice, Inbred C57BL , Ventral Tegmental Area/drug effects
12.
Endocrinology ; 159(11): 3605-3614, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30204871

ABSTRACT

Metabolic feedback from the periphery to the brain results from a dynamic physiologic fluctuation of nutrients and hormones, including glucose and fatty acids, ghrelin, leptin, and insulin. The specific interactions between humoral factors and how they influence feeding is largely unknown. We hypothesized that acute glucose availability may alter how the brain responds to ghrelin, a hormonal signal of energy availability. Acute glucose administration suppressed a range of ghrelin-induced behaviors as well as gene expression changes in hypothalamic neuropeptide Y (NPY) and agouti-related peptide (AgRP) neurons after ghrelin administration. Knockdown of the energy-sensing molecule AMP-activated protein kinase (AMPK) in AgRP neurons resulted in loss of the glucose effect, and mice responded as though pretreated with saline. Conversely, 2-deoxyglucose (2-DG), which decreases glucose availability, potentiated ghrelin-induced feeding and increased hypothalamic NPY mRNA levels. AMPK knockdown did not alter the additive effect of 2-DG and ghrelin on feeding. Our findings support the idea that computation of energy status is dynamic, is informed by multiple signals, and responds to acute fluctuations in metabolic state. These observations are broadly relevant to the investigation of neuroendocrine control of feeding and highlight the underappreciated complexity of control within these systems.


Subject(s)
Agouti-Related Protein/drug effects , Arcuate Nucleus of Hypothalamus/drug effects , Feeding Behavior/drug effects , Gene Expression/drug effects , Ghrelin/pharmacology , Glucose/pharmacology , Neurons/drug effects , Neuropeptide Y/drug effects , RNA, Messenger/drug effects , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Agouti-Related Protein/genetics , Animals , Antimetabolites/pharmacology , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , Deoxyglucose/pharmacology , Gene Knockdown Techniques , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Neurons/metabolism , Neuropeptide Y/genetics , RNA, Messenger/metabolism
13.
FASEB J ; : fj201800634R, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29932868

ABSTRACT

Hunger-sensing agouti-related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild-type controls, as KO mice act to restore pre-CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.-Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger-sensing AgRP neurons permits adaptation to calorie restriction.

14.
Endocrinology ; 159(6): 2473-2483, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29697769

ABSTRACT

Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.


Subject(s)
Adaptation, Physiological/genetics , Agouti-Related Protein/metabolism , Caloric Restriction , Carnitine O-Acetyltransferase/physiology , Feeding Behavior/physiology , Homeostasis/genetics , Neurons/metabolism , Animals , Carnitine O-Acetyltransferase/genetics , Carnitine O-Acetyltransferase/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Physical Conditioning, Animal/physiology
15.
Cell Rep ; 22(7): 1745-1759, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29444428

ABSTRACT

AgRP neurons control peripheral substrate utilization and nutrient partitioning during conditions of energy deficit and nutrient replenishment, although the molecular mechanism is unknown. We examined whether carnitine acetyltransferase (Crat) in AgRP neurons affects peripheral nutrient partitioning. Crat deletion in AgRP neurons reduced food intake and feeding behavior and increased glycerol supply to the liver during fasting, as a gluconeogenic substrate, which was mediated by changes to sympathetic output and peripheral fatty acid metabolism in the liver. Crat deletion in AgRP neurons increased peripheral fatty acid substrate utilization and attenuated the switch to glucose utilization after refeeding, indicating altered nutrient partitioning. Proteomic analysis in AgRP neurons shows that Crat regulates protein acetylation and metabolic processing. Collectively, our studies highlight that AgRP neurons require Crat to provide the metabolic flexibility to optimize nutrient partitioning and regulate peripheral substrate utilization, particularly during fasting and refeeding.


Subject(s)
Agouti-Related Protein/metabolism , Carnitine O-Acetyltransferase/metabolism , Fatty Acids/metabolism , Animals , Cholecystokinin/administration & dosage , Eating , Fasting , Feeding Behavior , Gene Deletion , Glucose/metabolism , Glucose Tolerance Test , Injections, Intraperitoneal , Injections, Intraventricular , Insulin/administration & dosage , Integrases/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice, Knockout , Proteomics , Reproducibility of Results
16.
Diabetes ; 66(2): 314-324, 2017 02.
Article in English | MEDLINE | ID: mdl-27899482

ABSTRACT

The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.


Subject(s)
Body Weight/genetics , Eating/genetics , Energy Metabolism/genetics , Glucose/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Neurons/metabolism , TRPC Cation Channels/genetics , Animals , Blotting, Western , Fasting , Glucose Tolerance Test , Homeostasis , Hypothalamus/cytology , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , TRPC Cation Channels/metabolism
17.
Endocrinology ; 157(10): 3946-3957, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27490185

ABSTRACT

Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation status. It is therefore critical to assess and state the acylation status of plasma ghrelin in all studies. In this study we tested the effect of des-acyl ghrelin administration on the hypothalamic-pituitary-adrenal axis and on anxiety-like behavior of mice lacking endogenous ghrelin and in ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no endogenous acyl ghrelin and high endogenous des-acyl ghrelin. Our results show des-acyl ghrelin produces an anxiogenic effect under nonstressed conditions, but this switches to an anxiolytic effect under stress. Des-acyl ghrelin influences plasma corticosterone under both nonstressed and stressed conditions, although c-fos activation in the paraventricular nucleus of the hypothalamus is not different. By contrast, GOAT KO are anxious under both nonstressed and stressed conditions, although this is not due to corticosterone release from the adrenals but rather from impaired feedback actions in the paraventricular nucleus of the hypothalamus, as assessed by c-fos activation. These results reveal des-acyl ghrelin treatment and GOAT deletion have differential effects on the hypothalamic-pituitary-adrenal axis and anxiety-like behavior, suggesting that anxiety-like behavior in GOAT KO mice is not due to high plasma des-acyl ghrelin.


Subject(s)
Acyltransferases/metabolism , Anxiety/physiopathology , Ghrelin/physiology , Hypothalamo-Hypophyseal System/physiology , Pituitary-Adrenal System/physiology , Acylation , Acyltransferases/genetics , Animals , Anxiety/psychology , Female , Male , Membrane Proteins , Mice, Inbred C57BL , Mice, Knockout
18.
J Neurosci ; 36(10): 3049-63, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26961958

ABSTRACT

Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKß1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Caloric Restriction , Ghrelin/metabolism , MPTP Poisoning/pathology , MPTP Poisoning/prevention & control , Parkinson Disease/physiopathology , Signal Transduction/physiology , AMP-Activated Protein Kinases/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Count , Corpus Striatum/pathology , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Ghrelin/genetics , Ghrelin/pharmacology , Glial Fibrillary Acidic Protein/metabolism , MPTP Poisoning/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Motor Activity/drug effects , Motor Activity/genetics , Neurons/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Tyrosine 3-Monooxygenase/metabolism
19.
Mol Cell Endocrinol ; 418 Pt 1: 9-16, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26261054

ABSTRACT

The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin at POMC or NPY neurons may depend on appropriate nutrient-sensing in these neurons and we hypothesize carnitine metabolism is critical in the integrative processing. Future research is required to examine the neuron-specific effects of carnitine metabolism on concurrent nutrient- and hormonal-sensing in AgRP and POMC neurons.


Subject(s)
Carnitine/metabolism , Energy Metabolism/physiology , Feedback, Physiological/physiology , Homeostasis/physiology , Hypothalamus/metabolism , Animals , Fatty Acids/metabolism , Ghrelin/metabolism , Glucose/metabolism , Humans , Leptin/metabolism , Neurons/metabolism
20.
Endocrinology ; 156(5): 1701-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25742051

ABSTRACT

The hypothalamic arcuate nucleus (ARC) contains 2 key neural populations, neuropeptide Y (NPY) and proopiomelanocortin (POMC), and, together with orexin neurons in the lateral hypothalamus, plays an integral role in energy homeostasis. However, no studies have examined total neuronal number and volume after high-fat diet (HFD) exposure using sophisticated stereology. We used design-based stereology to estimate NPY and POMC neuronal number and volume, as well as glial fibrillary acidic protein (astrocyte marker) and ionized calcium-binding adapter molecule 1 (microglia marker) cell number in the ARC; as well as orexin neurons in the lateral hypothalamus. Stereological analysis indicated approximately 8000 NPY and approximately 9000 POMC neurons in the ARC, and approximately 7500 orexin neurons in the lateral hypothalamus. HFD exposure did not affect total neuronal number in any population. However, HFD significantly increased average NPY cell volume and affected NPY and POMC cell volume distribution. HFD reduced orexin cell volume but had a bimodal effect on volume distribution with increased cells at relatively small volumes and decreased cells with relatively large volumes. ARC glial fibrillary acidic protein cells increased after 2 months on a HFD, although no significant difference after 6 months on chow diet or HFD was observed. No differences in ARC ionized calcium-binding adapter molecule 1 cell number were observed in any group. Thus, HFD affects ARC NPY or POMC neuronal cell volume number not cell number. Our results demonstrate the importance of stereology to perform robust unbiased analysis of cell number and volume. These data should be an empirical baseline reference to which future studies are compared.


Subject(s)
Arcuate Nucleus of Hypothalamus/cytology , Astrocytes/cytology , Cell Size , Microglia/cytology , Neurons/cytology , Obesity , Animals , Astrocytes/metabolism , Calcium-Binding Proteins/metabolism , Cell Count , Diet, High-Fat , Glial Fibrillary Acidic Protein , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Microfilament Proteins/metabolism , Microglia/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptide Y/metabolism , Neuropeptides/metabolism , Orexins , Pro-Opiomelanocortin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...