Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Sci Rep ; 13(1): 10154, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349387

ABSTRACT

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti, is lacking. In the current study, we utilized solid-state nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry, and transmission electron microscopy to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti. No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.


Subject(s)
Aedes , Insecticides , Pyrethrins , Yellow Fever , Animals , Insecticides/pharmacology , Insecticide Resistance , Mosquito Vectors
2.
bioRxiv ; 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36712033

ABSTRACT

Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti , is lacking. In the current study, we utilized solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy, gas chromatography/mass spectrometry (GC-MS), and transmission electron microscopy (TEM) to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti . No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.

3.
J Fungi (Basel) ; 8(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36294632

ABSTRACT

Candida auris is a recently emerged global fungal pathogen, which causes life-threatening infections, often in healthcare settings. C. auris infections are worrisome because the fungus is often resistant to multiple antifungal drug classes. Furthermore, C. auris forms durable and difficult to remove biofilms. Due to the relatively recent, resilient, and resistant nature of C. auris, we investigated whether it produces the common fungal virulence factor melanin. Melanin is a black-brown pigment typically produced following enzymatic oxidation of aromatic precursors, which promotes fungal virulence through oxidative stress resistance, mammalian immune response evasion, and antifungal peptide and pharmaceutical inactivation. We found that certain strains of C. auris oxidized L-DOPA and catecholamines into melanin. Melanization occurred extracellularly in a process mediated by alkalinization of the extracellular environment, resulting in granule-like structures that adhere to the fungus' external surface. C. auris had relatively high cell surface hydrophobicity, but there was no correlation between hydrophobicity and melanization. Melanin protected the fungus from oxidative damage, but we did not observe a protective role during infection of macrophages or Galleria mellonella larvae. In summary, C. auris alkalinizes the extracellular medium, which promotes the non-enzymatic oxidation of L-DOPA to melanin that attaches to its surface, thus illustrating a novel mechanism for fungal melanization.

4.
Carbohydr Polym ; 291: 119547, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35698377

ABSTRACT

Microbial polysaccharide characterization requires purification that often involves detergent precipitation and lyophilization. Here we examined physicochemical changes following lyophilization of Cryptococcus neoformans exopolysaccharide (EPS). Solution 1H Nuclear Magnetic Resonance (NMR) reveals significant anomeric signal attenuation following lyophilization of native EPS while 1H solid-state Nuclear Magnetic Resonance (ssNMR) shows few changes, suggesting diminished molecular motion and consequent broadening of 1H NMR polysaccharide resonances. 13C ssNMR, dynamic light scattering, and transmission electron microscopy show that, while native EPS has rigid molecular characteristics and contains small, loosely packed polysaccharide assemblies, lyophilized and resuspended EPS is disordered and contains larger dense aggregates, suggesting that structural water molecules in the interior of the polysaccharide assemblies are removed during extensive lyophilization. Importantly, mAbs to C. neoformans polysaccharide bind native EPS more strongly than lyophilized EPS. Together, these observations argue for caution when interpreting the biological and immunological attributes of polysaccharides that have been lyophilized to dryness.


Subject(s)
Cryptococcus neoformans , Polysaccharides , Cryptococcus neoformans/metabolism , Freeze Drying , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Polysaccharides/metabolism , Polysaccharides, Bacterial/chemistry
5.
ACS Omega ; 7(5): 3978-3989, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35155893

ABSTRACT

The protection of terrestrial plants from desiccation, mechanical injury, and pathogenic invasion is achieved by waxes and cutin polyesters on leaf and fruit surfaces as well as suberin polymers that are embedded in the cell walls of roots, but the physicochemical principles governing the organization of these biological composites remain incompletely understood. Despite the well-established enzymatic mediation of suberin formation in the skins of potato tubers, cork oak trees, and internal plant tissues, the additional possibility of self-assembly in this system was suggested by our serendipitous finding that solvent extracts from potato phellem tissues form suspended fibers and needles in the absence of such catalysts over a period of several weeks. In the current study, we investigated self-assembly for three-component model chemical mixtures comprised of a hydroxyfatty acid, glycerol, and either of two hydroxycinnamic acids that together typify the building blocks of potato suberin biopolymers. We demonstrate that these mixtures spontaneously form lamellar structures that are reminiscent of suberized plant tissues, incorporate all constituents into self-assemblies, can form covalently bound ester structures, and display antibacterial activity. These findings provide new perspectives on the self-association and reactivity of these classes of organic compounds, insights into agriculturally important suberin formation in food crops, and a starting point for engineering sustainable materials with antimicrobial capabilities.

6.
J Biol Chem ; 298(1): 101519, 2022 01.
Article in English | MEDLINE | ID: mdl-34942148

ABSTRACT

Melanin is a major virulence factor in pathogenic fungi that enhances the ability of fungal cells to resist immune clearance. Cryptococcus neoformans is an important human pathogenic fungus that synthesizes melanin from exogenous tissue catecholamine precursors during infection, but the type of melanin made in cryptococcal meningoencephalitis is unknown. We analyzed the efficacy of various catecholamines found in brain tissue in supporting melanization using animal brain tissue and synthetic catecholamine mixtures reflecting brain tissue proportions. Solid-state NMR spectra of the melanin pigment produced from such mixtures yielded more melanin than expected if only the preferred constituent dopamine had been incorporated, suggesting uptake of additional catecholamines. Probing the biosynthesis of melanin using radiolabeled catecholamines revealed that C. neoformans melanization simultaneously incorporated more than one catecholamine, implying that the pigment was polytypic in nature. Nonetheless, melanin derived from individual or mixed catecholamines had comparable ability to protect C. neoformans against ultraviolet light and oxidants. Our results indicate that melanin produced during infection differs depending on the catecholamine composition of tissue and that melanin pigment synthesized in vivo is likely to accrue from the polymerization of a mixture of precursors. From a practical standpoint, our results strongly suggest that using dopamine as a polymerization precursor is capable of producing melanin pigment comparable to that produced during infection. On a more fundamental level, our findings uncover additional structural complexity for natural cryptococcal melanin by demonstrating that pigment produced during human infection is likely to be composed of polymerized moieties derived from chemically different precursors.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Melanins , Animals , Catecholamines , Cryptococcosis/microbiology , Cryptococcus neoformans/metabolism , Dopamine/metabolism , Melanins/metabolism
7.
Phytochemistry ; 190: 112885, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34339979

ABSTRACT

The growth and survival of terrestrial plants require control of their interactions with the environment, e.g., to defend against desiccation and microbial invasion. For major food crops, the protection conferred by the outer skins (periderm in potato) is essential to cultivation, storage, and marketing of the edible tubers and fruits. Potatoes are particularly vulnerable to bacterial infections due to their high content of water and susceptibility to mechanical wounding. Recently, both specific and conserved gene silencing (StNAC103-RNAi and StNAC103-RNAi-c, respectively) were found to increase the load of wax and aliphatic suberin depolymerization products in tuber periderm, implicating this NAC gene as a repressor of the wax and suberin biosynthetic pathways. However, an important gap in our understanding of StNAC103 silencing concerns the metabolites produced in periderm cells as antimicrobial defense agents and potential building blocks of the deposited suberin biopolymer. In the current work, we have expanded prior studies on StNAC103 silenced lines by conducting comprehensive parallel analyses to profile changes in chemical constituents and antibacterial activity. Compositional analysis of the intact suberized cell walls using solid-state 13C NMR (ssNMR) showed that NAC silencing produced an increase in the long-chain aliphatic groups deposited within the periderm cell walls. LC-MS of polar extracts revealed up-regulation of glycoalkaloids in both StNAC103-RNAi and StNAC103-RNAi-c native periderms but down-regulation of a phenolic amine in StNAC103-RNAi-c and a phenolic acid in StNAC103-RNAi native periderms. The nonpolar soluble metabolites identified using GC-MS included notably abundant long-chain alkane metabolites in both silenced samples. By coordinating the differentially accumulated soluble metabolites and the suberin depolymerization products with the ssNMR-based profiles for the periderm polymers, it was possible to obtain a holistic view of the chemical changes that result from StNAC103 gene silencing. Correspondingly, the chemical composition trends served as a backdrop to interpret trends in the chemical barrier defense function of native tuber periderms, which was found to be more robust for the nonpolar extracts.


Subject(s)
Solanum tuberosum , Anti-Bacterial Agents/pharmacology , Cell Wall , Plant Tubers/genetics , RNA Interference , Solanum tuberosum/genetics
8.
J Fungi (Basel) ; 6(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271921

ABSTRACT

The fungal cell wall serves as the interface between the cell and the environment. Fungal cell walls are composed largely of polysaccharides, primarily glucans and chitin, though in many fungi stress-resistant cell types elaborate additional cell wall structures. Here, we use solid-state nuclear magnetic resonance spectroscopy to compare the architecture of cell wall fractions isolated from Saccharomyces cerevisiae spores and Cryptococcus neoformans melanized cells. The specialized cell walls of these two divergent fungi are highly similar in composition. Both use chitosan, the deacetylated derivative of chitin, as a scaffold on which a polyaromatic polymer, dityrosine and melanin, respectively, is assembled. Additionally, we demonstrate that a previously identified but uncharacterized component of the S. cerevisiae spore wall is composed of triglycerides, which are also present in the C. neoformans melanized cell wall. Moreover, we identify a tyrosine-derived constituent in the C. neoformans wall that, although it is not dityrosine, is a non-pigment constituent of the cell wall. The similar composition of the walls of these two phylogenetically distant species suggests that triglycerides, polyaromatics, and chitosan are basic building blocks used to assemble highly stress-resistant cell walls and the use of these constituents may be broadly conserved in other fungal species.

9.
Solid State Nucl Magn Reson ; 109: 101686, 2020 10.
Article in English | MEDLINE | ID: mdl-32896783

ABSTRACT

Many interesting solid-state targets for biological research do not form crystalline structures; these materials include intrinsically disordered proteins, plant biopolymer composites, cell-wall polysaccharides, and soil organic matter. The absence of aligned repeating structural elements and atomic-level rigidity presents hurdles to achieving structural elucidation and obtaining functional insights. We describe strategies for adapting several solid-state NMR methods to determine the molecular structures and compositions of these amorphous biosolids. The main spectroscopic problems in studying amorphous structures by NMR are over/under-sampling of the spin signals and spectral complexity. These problems arise in part because amorphous biosolids typically contain a mix of rigid and mobile domains, making it difficult to select a single experiment or set of acquisition conditions that fairly represents all nuclear spins in a carbon-based organic sample. These issues can be addressed by running hybrid experiments, such as using direct excitation alongside cross polarization-based methods, to develop a more holistic picture of the macromolecular system. In situations of spectral crowding or overlap, the structural elucidation strategy can be further assisted by coupling 13C spins to nuclei such as 15N, filtering out portions of the spectrum, highlighting individual moieties of interest, and adding a second or third spectral dimension to an NMR experiment in order to spread out the resonances and link them pairwise through space or through bonds. We discuss practical aspects and illustrations from the recent literature for 1D experiments that use cross or direct polarization and both homo- and heteronuclear 2D and 3D solid-state NMR experiments.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Macromolecular Substances/chemistry
10.
J Biol Chem ; 295(44): 15083-15096, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32859751

ABSTRACT

A primary virulence-associated trait of the opportunistic fungal pathogen Cryptococcus neoformans is the production of melanin pigments that are deposited into the cell wall and interfere with the host immune response. Previously, our solid-state NMR studies of isolated melanized cell walls (melanin "ghosts") revealed that the pigments are strongly associated with lipids, but their identities, origins, and potential roles were undetermined. Herein, we exploited spectral editing techniques to identify and quantify the lipid molecules associated with pigments in melanin ghosts. The lipid profiles were remarkably similar in whole C. neoformans cells, grown under either melanizing or nonmelanizing conditions; triglycerides (TGs), sterol esters (SEs), and polyisoprenoids (PPs) were the major constituents. Although no quantitative differences were found between melanized and nonmelanized cells, melanin ghosts were relatively enriched in SEs and PPs. In contrast to lipid structures reported during early stages of fungal growth in nutrient-rich media, variants found herein could be linked to nutrient stress, cell aging, and subsequent production of substances that promote chronic fungal infections. The fact that TGs and SEs are the typical cargo of lipid droplets suggests that these organelles could be connected to C. neoformans melanin synthesis. Moreover, the discovery of PPs is intriguing because dolichol is a well-established constituent of human neuromelanin. The presence of these lipid species even in nonmelanized cells suggests that they could be produced constitutively under stress conditions in anticipation of melanin synthesis. These findings demonstrate that C. neoformans lipids are more varied compositionally and functionally than previously recognized.


Subject(s)
Carbon-13 Magnetic Resonance Spectroscopy/methods , Cell Wall/metabolism , Cryptococcus neoformans/metabolism , Lipids/classification , Melanins/metabolism , Proton Magnetic Resonance Spectroscopy/methods , Cryptococcus neoformans/pathogenicity , Lipids/analysis , Virulence
11.
Protein Sci ; 29(7): 1606-1617, 2020 07.
Article in English | MEDLINE | ID: mdl-32298508

ABSTRACT

Two different members of the fatty acid-binding protein (FABP) family are found in enterocyte cells of the gastrointestinal system, namely liver-type and intestinal fatty acid-binding proteins (LFABP and IFABP, also called FABP1 and FABP2, respectively). Striking phenotypic differences have been observed in knockout mice for either protein, for example, high fat-fed IFABP-null mice remained lean, whereas LFABP-null mice were obese, correlating with differences in food intake. This finding prompted us to investigate the role each protein plays in directing the specificity of binding to ligands involved in appetite regulation, such as fatty acid ethanolamides and related endocannabinoids. We determined the binding affinities for nine structurally related ligands using a fluorescence competition assay, revealing tighter binding to IFABP than LFABP for all ligands tested. We found that the head group of the ligand had more impact on binding affinity than the alkyl chain, with the strongest binding observed for the carboxyl group, followed by the amide, and then the glycerol ester. These trends were confirmed using two-dimensional 1 H-15 N nuclear magnetic resonance (NMR) to monitor chemical shift perturbation of the protein backbone resonances upon titration with ligand. Interestingly, the NMR data revealed that different residues of IFABP were involved in the coordination of endocannabinoids than those implicated for fatty acids, whereas the same residues of LFABP were involved for both classes of ligand. In addition, we identified residues that are uniquely affected by binding of all types of ligand to IFABP, suggesting a rationale for its tighter binding affinity compared with LFABP.


Subject(s)
Endocannabinoids/chemistry , Fatty Acid-Binding Proteins/chemistry , Intestinal Mucosa/chemistry , Animals , Endocannabinoids/metabolism , Fatty Acid-Binding Proteins/biosynthesis , Fatty Acid-Binding Proteins/genetics , Gene Expression Regulation , Intestinal Mucosa/metabolism , Mice , Mice, Knockout , Nuclear Magnetic Resonance, Biomolecular
12.
Bioorg Med Chem ; 28(9): 115428, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32216988

ABSTRACT

Erwinia carotovora is a major cause of potato tuber infection, which results in disastrous failures of this important food crop. There is currently no effective antibiotic treatment against E. carotovora. Recently we reported antibacterial assays of wound tissue extracts from four potato cultivars that exhibit a gradient of russeting character, finding the highest potency against this pathogen for a polar extract from the tissue formed immediately after wounding by an Atlantic cultivar. In the current investigation, antibacterial activity-guided fractions of this extract were analyzed by liquid chromatography-mass spectrometry (LC-MS) utilizing a quadrupole-time-of-flight (QTOF) mass spectrometer. The most active chemical compounds identified against E. carotovora were: 6-O-nonyl glucitol, Lyratol C, n-[2-(4-Hydroxyphenyl)] ethyldecanamide, α-chaconine and α-solanine. Interactions among the three compounds, ferulic acid, feruloyl putrescine, and α-chaconine, representing metabolite classes upregulated during initial stages of wound healing, were also evaluated, offering possible explanations for the burst in antibacterial activity after tuber wounding and a chemical rationale for the temporal resistance phenomenon.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pectobacterium carotovorum/drug effects , Solanum tuberosum/chemistry , Tissue Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Tissue Extracts/chemistry , Tissue Extracts/isolation & purification , Wound Healing/drug effects
13.
J Biol Chem ; 295(7): 1815-1828, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31896575

ABSTRACT

Cryptococcus neoformans and Cryptococcus gattii are two species complexes in the large fungal genus Cryptococcus and are responsible for potentially lethal disseminated infections. These two complexes share several phenotypic traits, such as production of the protective compound melanin. In C. neoformans, the pigment associates with key cellular constituents that are essential for melanin deposition within the cell wall. Consequently, melanization is modulated by changes in cell-wall composition or ultrastructure. However, whether similar factors influence melanization in C. gattii is unknown. Herein, we used transmission EM, biochemical assays, and solid-state NMR spectroscopy of representative isolates and "leaky melanin" mutant strains from each species complex to examine the compositional and structural factors governing cell-wall pigment deposition in C. neoformans and C. gattii. The principal findings were the following. 1) C. gattii R265 had an exceptionally high chitosan content compared with C. neoformans H99; a rich chitosan composition promoted homogeneous melanin distribution throughout the cell wall but did not increase the propensity of pigment deposition. 2) Strains from both species manifesting the leaky melanin phenotype had reduced chitosan content, which was compensated for by the production of lipids and other nonpolysaccharide constituents that depended on the species or mutation. 3) Changes in the relative rigidity of cell-wall chitin were associated with aberrant pigment retention, implicating cell-wall flexibility as an independent variable in cryptococcal melanin assembly. Overall, our results indicate that cell-wall composition and molecular architecture are critical factors for the anchoring and arrangement of melanin pigments in both C. neoformans and C. gattii species complexes.


Subject(s)
Cell Wall/genetics , Cryptococcus gattii/metabolism , Cryptococcus neoformans/metabolism , Melanins/genetics , Pigmentation/genetics , Cell Wall/chemistry , Chitin/chemistry , Chitin/metabolism , Chitosan/chemistry , Chitosan/metabolism , Cryptococcosis/genetics , Cryptococcosis/microbiology , Cryptococcus gattii/genetics , Cryptococcus gattii/pathogenicity , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Humans , Magnetic Resonance Spectroscopy , Melanins/chemistry , Melanins/metabolism , Mutation/genetics
14.
J Biol Chem ; 294(27): 10471-10489, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31118223

ABSTRACT

Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.


Subject(s)
Cell Wall/metabolism , Cryptococcus neoformans/metabolism , Melanins/chemistry , Cryptococcus neoformans/classification , Levodopa/chemistry , Magnetic Resonance Spectroscopy , Melanins/analysis , Melanins/metabolism , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Particle Size , Phylogeny , Proteomics
15.
Phytochemistry ; 159: 75-89, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30597374

ABSTRACT

Solanum tuberosum, commonly known as the potato, is a worldwide food staple. During harvest, storage, and distribution the crop is at risk of mechanical damage. Wounding of the tuber skin can also become a point of entry for bacterial and fungal pathogens, resulting in substantial agricultural losses. Building on the proposal that potato tubers produce metabolites to defend against microbial infection during early stages of wound healing before protective suberized periderm tissues have developed, we assessed extracts of wound tissues from four potato cultivars with differing skin morphologies (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold). These assays were conducted at 0, 1, 2, 3 and 7 days post wounding against the plant pathogen Erwinia carotovora and a non-pathogenic Escherichia coli strain that served as a control. For each of the potato cultivars, only polar wound tissue extracts demonstrated antibacterial activity. The polar extracts from earlier wound-healing time points (days 0, 1 and 2) displayed notably higher antibacterial activity against both strains than the later wound-healing stages (days 3 and 7). These results support a burst of antibacterial activity at early time points. Parallel metabolite profiling of the extracts revealed differences in chemical composition at different wound-healing time points and allowed for identification of potential marker compounds according to healing stage for each of the cultivars. It was possible to monitor the transformations in the metabolite profiles that could account for the phenomenon of temporal resistance by looking at the relative quantities of various metabolite classes as a function of time.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pectobacterium carotovorum/drug effects , Plant Extracts/pharmacology , Plant Tubers/metabolism , Solanum tuberosum/metabolism , Wound Healing/drug effects , Alkaloids/metabolism , Amines/metabolism , Biomarkers/metabolism , Escherichia coli/physiology , Microbial Sensitivity Tests , Pectobacterium carotovorum/pathogenicity , Phenols/metabolism , Plant Tubers/microbiology , Solanum tuberosum/classification , Solanum tuberosum/microbiology , Species Specificity
16.
J Biol Chem ; 293(52): 20157-20168, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30385508

ABSTRACT

Natural brown-black eumelanin pigments confer structural coloration in animals and potently block ionizing radiation and antifungal drugs. These functions also make them attractive for bioinspired materials design, including coating materials for drug-delivery vehicles, strengthening agents for adhesive hydrogel materials, and free-radical scavengers for soil remediation. Nonetheless, the molecular determinants of the melanin "developmental road traveled" and the resulting architectural features have remained uncertain because of the insoluble, heterogeneous, and amorphous characteristics of these complex polymeric assemblies. Here, we used 2D solid-state NMR, EPR, and dynamic nuclear polarization spectroscopic techniques, assisted in some instances by the use of isotopically enriched precursors, to address several open questions regarding the molecular structures and associated functions of eumelanin. Our findings uncovered: 1) that the identity of the available catecholamine precursor alters the structure of melanin pigments produced either in Cryptococcus neoformans fungal cells or under cell-free conditions; 2) that the identity of the available precursor alters the scaffold organization and membrane lipid content of melanized fungal cells; 3) that the fungal cells are melanized preferentially by an l-DOPA precursor; and 4) that the macromolecular carbon- and nitrogen-based architecture of cell-free and fungal eumelanins includes indole, pyrrole, indolequinone, and open-chain building blocks that develop depending on reaction time. In conclusion, the availability of catecholamine precursors plays an important role in eumelanin development by affecting the efficacy of pigment formation, the melanin molecular structure, and its underlying scaffold in fungal systems.


Subject(s)
Cryptococcus neoformans/metabolism , Levodopa/metabolism , Melanins/biosynthesis , Cell-Free System/chemistry , Cell-Free System/metabolism , Cryptococcus neoformans/chemistry , Levodopa/chemistry , Melanins/chemistry
17.
Neuropsychopharmacology ; 43(11): 2165-2179, 2018 10.
Article in English | MEDLINE | ID: mdl-30022062

ABSTRACT

Lipid microdomains ("rafts") are dynamic, nanoscale regions of the plasma membrane enriched in cholesterol and glycosphingolipids, that possess distinctive physicochemical properties including higher order than the surrounding membrane. Lipid microdomain integrity is thought to affect neurotransmitter signaling by regulating membrane-bound protein signaling. Among the proteins potentially affected are monoaminergic receptors and transporters. As dysfunction of monoaminergic neurotransmission is implicated in major depressive disorder and other neuropsychiatric conditions, interactions with lipid microdomains may be of clinical importance. This systematic review evaluates what is known about the molecular relationships of monoamine transporter and receptor regulation to lipid microdomains. The PubMed/MeSH database was searched for original studies published in English through August 2017 concerning relationships between lipid microdomains and serotonin, dopamine and norepinephrine transporters and receptors. Fifty-seven publications were identified and assessed. Strong evidence implicates lipid microdomains in the regulation of serotonin and norepinephrine transporters; serotonin 1A, 2A, 3A, and 7A receptors; and dopamine D1 and ß2 adrenergic receptors. Results were conflicting or more complex regarding lipid microdomain associations with the dopamine transporter, D2, D3, and D5 receptors; and negative with respect to ß1 adrenergic receptors. Indirect evidence suggests that antidepressants, lipid-lowering drugs, and polyunsaturated fatty acids may exert effects on depression and suicide by altering the lipid milieu, thereby affecting monoaminergic transporter and receptor signaling. The lipid composition of membrane subdomains is involved in localization and trafficking of specific monoaminergic receptors and transporters. Elucidating precise mechanisms whereby lipid microdomains modulate monoamine neurotransmission in clinical contexts can have critical implications for pharmacotherapeutic targeting.


Subject(s)
Depressive Disorder, Major/metabolism , Lipid Metabolism/physiology , Membrane Microdomains/metabolism , Receptors, Biogenic Amine/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Animals , Depressive Disorder, Major/psychology , Dopamine Plasma Membrane Transport Proteins/physiology , Humans , Norepinephrine Plasma Membrane Transport Proteins/physiology
18.
Phytochemistry ; 147: 30-48, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29288888

ABSTRACT

Potato native and wound healing periderms contain an external multilayered phellem tissue (potato skin) consisting of dead cells whose cell walls are impregnated with suberin polymers. The phellem provides physical and chemical barriers to tuber dehydration, heat transfer, and pathogenic infection. Previous RNAi-mediated gene silencing studies in native periderm have demonstrated a role for a feruloyl transferase (FHT) in suberin biosynthesis and revealed how its down-regulation affects both chemical composition and physiology. To complement these prior analyses and to investigate the impact of FHT deficiency in wound periderms, a bottom-up methodology has been used to analyze soluble tissue extracts and solid polymers concurrently. Multivariate statistical analysis of LC-MS and GC-MS data, augmented by solid-state NMR and thioacidolysis, yields two types of new insights: the chemical compounds responsible for contrasting metabolic profiles of native and wound periderms, and the impact of FHT deficiency in each of these plant tissues. In the current report, we confirm a role for FHT in developing wound periderm and highlight its distinctive features as compared to the corresponding native potato periderm.


Subject(s)
Plant Epidermis/metabolism , Solanum tuberosum/metabolism , Transferases/metabolism , Down-Regulation , Lipids , Multivariate Analysis , Transferases/deficiency
19.
Microbiology (Reading) ; 163(11): 1540-1556, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29043954

ABSTRACT

Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.


Subject(s)
Acetylglucosamine/metabolism , Cell Wall/metabolism , Cryptococcus neoformans/metabolism , Melanins/metabolism , Cell Wall/chemistry , Cell Wall/ultrastructure , Chitin/metabolism , Chitosan/metabolism , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/ultrastructure , Drug Resistance, Fungal/physiology , Enzyme Assays , Laccase/metabolism , Melanins/biosynthesis , Microbial Sensitivity Tests , Phenotype
20.
Biochem Biophys Rep ; 10: 132-136, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955740

ABSTRACT

Lipid microdomains ('lipid rafts') are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13) and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10-35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent 'centerband' peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity) of this 'centerband' peak, together with the ratio of intensities between the centerband and 'spinning sideband' peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing temperature produced decreases in the 1.3 ppm peak intensity and a discontinuity at ~18 °C, for which the simplest explanation is a phase transition from Ld to Lo phases indicative of raft formation. Rates of lateral diffusion of the acyl chain lipid signal at 1.3 ppm, a quantitative measure of microdomain size, were consistent with lipid molecules organized in rafts. These results show that HRMAS NMR can characterize lipid microdomains in human platelets, a methodological advance that could be extended to other tissues in which membrane biochemistry may have physiological and pathophysiological relevance.

SELECTION OF CITATIONS
SEARCH DETAIL
...