Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Knee ; 39: 50-61, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36162143

ABSTRACT

BACKGROUND: Knee osteoarthritis progression may be related to altered knee loads, particularly in those with varus malalignment. Using randomized controlled trial data, this secondary analysis of complete datasets (n = 67) compared the effects of a functional weightbearing (WB) and non-weightbearing quadriceps strengthening exercise (NWB) program on measures of medial tibiofemoral joint contact force (MTCF) during walking. METHODS: Participants aged ≥50 years and with medial knee osteoarthritis and varus malalignment were randomly allocated to a 12-week, home-based, physiotherapist-prescribed exercise program comprised of WB exercises (n = 31), or NWB exercise (n = 36). Three-dimensional lower-body motion, ground reaction forces, and surface electromyograms from six lower-limb muscles were acquired during walking at baseline and at 12-weeks follow-up. An electromyogram-informed neuromusculoskeletal model estimated bodyweight (BW) normalized MTCF (peak and impulse), including external and muscular contributions to MTCF. RESULTS: There was no between-group difference in the change in peak MTCF (-0.02 [-0.12, 0.09] BW) or MTCF impulse (-0.01 [-0.06, 0.03] BW·s). There was a between-group difference in the muscle contribution to peak MTCF (-0.08 [-0.15, -0.00] BW) and MTCF impulse (-0.04 [-0.08, -0.00] BW·s), whereby the muscle contribution reduced more in the NWB group over time compared to the WB group. There was also a between group-difference in the external contribution to peak MTCF (0.09 [0.01, 0.18] BW), but this reduced more in the WB group than in the NWB group. CONCLUSIONS: Our findings suggest no difference in MTCF between the two exercise programs, but differences in the contribution to MTCF between the two exercise programs were observed in those with medial knee osteoarthritis and varus malalignment.


Subject(s)
Osteoarthritis, Knee , Quadriceps Muscle , Humans , Weight-Bearing/physiology , Knee Joint , Exercise , Biomechanical Phenomena , Gait/physiology
2.
PLoS One ; 17(6): e0269331, 2022.
Article in English | MEDLINE | ID: mdl-35653355

ABSTRACT

OBJECTIVE: To compare the effect of stable supportive to flat flexible walking shoes on medial tibiofemoral contact force (MTCF) in people with medial knee osteoarthritis and varus malalignment. DESIGN: This was a randomized cross-over study. Twenty-eight participants aged ≥50 years with medial knee osteoarthritis and varus malalignment were recruited from the community. Three-dimensional full-body motion, ground reaction forces and surface electromyograms from twelve lower-limb muscles were acquired during six speed-matched walking trials for flat flexible and stable supportive shoes, tested in random order. An electromyogram-informed neuromusculoskeletal model with subject-specific geometry estimated bodyweight (BW) normalized MTCF. Waveforms were analyzed using statistical parametric mapping with a repeated measures analysis of variance model. Peak MTCF, MTCF impulse and MTCF loading rates (discrete outcomes) were evaluated using a repeated measures multivariate analysis of variance model. RESULTS: Statistical parametric mapping showed lower MTCF in stable supportive compared to flat flexible shoes during 5-18% of stance phase (p = 0.001). For the discrete outcomes, peak MTCF and MTCF impulse were not different between the shoe styles. However, mean differences [95%CI] in loading impulse (-0.02 BW·s [-0.02, 0.01], p<0.001), mean loading rate (-1.42 BW·s-1 [-2.39, -0.45], p = 0.01) and max loading rate (-3.26 BW·s-1 [-5.94, -0.59], p = 0.02) indicated lower measure of loading in stable supportive shoes compared to flexible shoes. CONCLUSIONS: Stable supportive shoes reduced MTCF during loading stance and reduced loading impulse/rates compared to flat flexible shoes and therefore may be more suitable in people with medial knee osteoarthritis and varus malalignment. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry (12619000622101).


Subject(s)
Osteoarthritis, Knee , Shoes , Australia , Biomechanical Phenomena , Cross-Over Studies , Humans , Walking/physiology
3.
PLoS One ; 17(6): e0257171, 2022.
Article in English | MEDLINE | ID: mdl-35657960

ABSTRACT

BACKGROUND: Previous investigations on valgus knee bracing have mostly used the external knee adduction moment. This is a critical limitation, as the external knee adduction moment does not account for muscle forces that contribute substantially to the medial tibiofemoral contact force (MTCF) during walking. The aims of this pilot study were to: 1) determine the effect of a valgus knee brace on MTCF; 2) determine whether the effect is more pronounced after 8 weeks of brace use; 3) assess the feasibility of an 8-week brace intervention. METHODS: Participants with medial radiographic knee OA and varus malalignment were fitted with an Össur Unloader One© brace. Participants were instructed to wear the brace for 8 weeks. The MTCF was estimated via an electromyogram-assisted neuromuscular model with and without the knee brace at week 0 and week 8. Feasibility outcomes included change in symptoms, quality of life, confidence, acceptability, adherence and adverse events. RESULTS: Of the 30 (60% male) participants enrolled, 28 (93%) completed 8-week outcome assessments. There was a main effect of the brace (p<0.001) on peak MTCF and MTCF impulse, but no main effect for time (week 0 and week 8, p = 0.10), and no interaction between brace and time (p = 0.62). Wearing the brace during walking significantly reduced the peak MTCF (-0.05 BW 95%CI [-0.10, -0.01]) and MTCF impulse (-0.07 BW.s 95%CI [-0.09, -0.05]). Symptoms and quality of life improved by clinically relevant magnitudes over the 8-week intervention. Items relating to confidence and acceptability were rated relatively highly. Participants wore the brace on average 6 hrs per day. Seventeen participants reported 30 minor adverse events over an 8-week period. CONCLUSION: Although significant, reductions in the peak MTCF and MTCF while wearing the knee brace were small. No effect of time on MTCF was observed. Although there were numerous minor adverse events, feasibility outcomes were generally favourable. TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry (12619000622101).


Subject(s)
Osteoarthritis, Knee , Australia , Biomechanical Phenomena/physiology , Braces , Female , Follow-Up Studies , Humans , Knee Joint/physiology , Male , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/therapy , Pilot Projects , Quality of Life
4.
Med Sci Sports Exerc ; 54(9): 1448-1458, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35551169

ABSTRACT

PURPOSE: This study aimed to test the hypothesis that common weight-bearing exercises generate higher lower-limb muscle forces but do not increase medial tibiofemoral contact force (MTCF) when compared with walking in people with medial knee osteoarthritis and varus malalignment. METHODS: Twenty-eight participants 50 yr or older with medial knee osteoarthritis and varus malalignment were recruited from the community. Three-dimensional lower-body motion, ground reaction forces, and surface EMG from 12 lower-limb muscles were acquired during five squat, lunge, single-leg heel raise, and walking trials, performed at self-selected speeds. An EMG-informed neuromusculoskeletal model with subject-specific bone geometry was used to estimate muscle forces (N) and body weight (BW)-normalized MTCF. The peak forces for muscle groups (knee extensors, knee flexors, ankle plantar flexors, and hip abductors) and peak MTCF were compared with walking using a multivariate analysis of variance model. RESULTS: There was a significant main effect ( P < 0.001). Post hoc tests (mean difference (95% confidence intervals)) showed that, compared with walking, participants generated higher peak knee extensor and flexor forces during squatting (extensor: 902 N (576 to 1227 N), flexor: 192 N (9.39 to 375 N)) and lunging (extensor: 917 N (604 to 1231 N), flexor: 496 N (198 to 794 N)), and lower peak hip abductor force during squatting (-1975 N (-2841 to -1108 N)) and heel raises (-1217 N (-2131 to -303 N)). Compared with walking, MTCF was lower during squatting (-0.79 BW (-1.04 to -0.53 BW)) and heel raises (-0.27 BW (-0.50 to -0.04 BW)). No other significant differences were observed. CONCLUSIONS: Participants generated higher peak knee flexor and extensor forces during squatting and lunging but did not increase peak MTCF compared with walking. Clinicians can use these findings to reassure themselves and patients that weight-bearing exercises in these positions do not adversely increase forces within the osteoarthritic joint compartment.


Subject(s)
Osteoarthritis, Knee , Biomechanical Phenomena , Cross-Sectional Studies , Humans , Knee Joint/physiology , Muscle, Skeletal/physiology , Walking/physiology , Weight-Bearing/physiology
5.
Gait Posture ; 79: 203-209, 2020 06.
Article in English | MEDLINE | ID: mdl-32438267

ABSTRACT

BACKGROUND: Arthroscopic partial meniscectomy may cause knee osteoarthritis, which may be related to altered joint loading. Previous research has failed to demonstrate that exercise can reduce medial compartment knee loads following meniscectomy but has not considered muscular loading in their estimates. RESEARCH QUESTION: What is the effect of exercise compared to no intervention on peak medial tibiofemoral joint contact force during walking using an electromyogram-driven neuromusculoskeletal model, following medial arthroscopic partial meniscectomy? METHODS: This is a secondary analysis of a randomized controlled trial (RCT). 41 participants aged between 30-50 years with medial arthroscopic partial meniscectomy within the past 3-12 months, were randomly allocated to either a 12-week, home-based, physiotherapist-guided exercise program or to no exercise (control group). Three-dimensional lower-body motion, ground reaction forces, and surface electromyograms from eight lower-limb muscles were acquired during self-selected normal- and fast-paced walking at baseline and follow-up. An electromyogram-driven neuromusculoskeletal model estimated medial compartment contact forces (body weight). Linear regression models evaluated between-group differences (mean difference (95% CI)). RESULTS: There were no significant between-group differences in the change (follow-up minus baseline) in first peak medial contact force during self-selected normal- or fast-paced walking (0.07 (-0.08 to 0.23), P = 0.34 and 0.01 (-0.19 to 0.22), P = 0.89 respectively). No significant between-group difference was found for change in second peak medial contact force during normal- or fast-paced walking (0.09 (-0.09 to 0.28), P = 0.31 and 0.02 (-0.17 to 0.22), P = 0.81 respectively). At the individual level, variability was observed for changes in first (range -26.2% to +31.7%) and second (range -46.5% to +59.9%) peak tibiofemoral contact force. SIGNIFICANCE: This is the first study to apply electromyogram-driven neuromusculoskeletal modelling to an exercise intervention in a RCT. While our results suggest that a 12-week exercise program does not alter peak medial knee loads after meniscectomy, within-participant variability suggests individual-specific muscle activation patterns that warrant further investigation.


Subject(s)
Arthroscopy , Exercise Therapy , Knee Joint/physiology , Meniscectomy/rehabilitation , Muscle, Skeletal/physiology , Adult , Arthroscopy/adverse effects , Arthroscopy/methods , Biomechanical Phenomena , Electromyography , Female , Humans , Lower Extremity/physiology , Male , Meniscectomy/adverse effects , Meniscectomy/methods , Menisci, Tibial/surgery , Middle Aged , Osteoarthritis, Knee/etiology , Postoperative Complications , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...