Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Chemosphere ; 361: 142355, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768787

ABSTRACT

As global effects of water scarcity raise concerns and environmental regulations evolve, contemporary wastewater treatment plants (WWTPs) face the challenge of effectively removing a diverse range of contaminants of emerging concern (CECs) from municipal effluents. This study focuses on the assessment of advanced oxidation processes (AOPs), specifically UV-C/H2O2 and UV-C/Chlorine, for the removal of 14 target CECs in municipal secondary effluent (MSE, spiked with 10 µg L-1 of each CEC) or in the subsequent MSE nanofiltration retentate (NFR, no spiking). Phototreatments were carried out in continuous mode operation, with a hydraulic retention time of 3.4 min, using a tube-in-tube membrane photoreactor. For both wastewater matrices, UV-C photolysis (3.3 kJ L-1) exhibited high efficacy in removing CECs susceptible to photolysis, although lower treatment performance was observed for NFR. In MSE, adding 10 mg L-1 of H2O2 or Cl2 enhanced treatment efficiency, with UV-C/H2O2 outperforming UV-C/Chlorine. Both UV-C/AOPs eliminated the chronic toxicity of MSE toward Chlorella vulgaris. In the NFR, not only was the degradation of target CECs diminished, but chronic toxicity to C. vulgaris persisted after both UV-C/AOPs, with UV-C/Chlorine increasing toxicity due to potential toxic by-products. Nanofiltration permeate (NFP) exhibited low CECs and microbial content. A single chlorine addition effectively controlled Escherichia coli regrowth for 3 days, proving NFP potential for safe reuse in crop irrigation (<1 CFU/100 mL for E. coli; <1 mg L-1 for free chlorine). These findings provide valuable insights into the applications and limitations of UV-C/H2O2 and UV-C/Chlorine for distinct wastewater treatment scenarios.


Subject(s)
Chlorine , Filtration , Hydrogen Peroxide , Photolysis , Ultraviolet Rays , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Chlorine/chemistry , Filtration/methods , Water Purification/methods , Chlorella vulgaris/drug effects , Escherichia coli/drug effects , Oxidation-Reduction
2.
Chemosphere ; 352: 141444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346513

ABSTRACT

This study assessed the occurrence of five antibiotics, three hormones, caffeine, and long and short-chain perfluoroalkyl and polyfluoroalkyl substances (PFASs) in surface water and feedstuff samples obtained from aquaculture cages in Três Marias reservoir in Brazil. This is the first work to evaluate the presence of PFAS in surface water used for aquaculture in Brazil. Solid-phase extraction and low temperature partitioning extraction followed by liquid chromatography coupled to mass spectrometry (LC-MS) were performed to process and analyze surface water samples and feedstuff, respectively. The ecotoxicological risk quotient was calculated for target compounds detected in water. Ciprofloxacin and caffeine were detected in all surface water samples. Pharmaceutical drugs ranged from 0.7 ng L-1 (trimethoprim) to 389.2 ng L -1 (ß-estradiol). Estrone (10.24 ng g-1) and ß-estradiol (66.20 ng g-1) were also found in feedstuff. Four PFASs (PFOA, PFDoA, PFTeDA, and PFBS) were detected (9.40-15.2 µg L-1) at levels higher than reported in studies conducted worldwide. Ecotoxicological risk assessment indicated high risks for caffeine and PFOA, PFDoA, and PFTeDA with RQ values from 10 to 103. These findings reveal risks to biodiversity, ecosystem integrity and human health considering possible intake of these contaminants by fish consumption due to potential bioaccumulation of these substances. Hence, it is critical to conduct more studies in this direction in Brazil and other low and middle-low-income countries.


Subject(s)
Alkanesulfonic Acids , Cichlids , Fluorocarbons , Water Pollutants, Chemical , Humans , Animals , Water/analysis , Brazil , Environmental Monitoring , Anti-Bacterial Agents/analysis , Alkanesulfonic Acids/analysis , Caffeine/analysis , Ecosystem , Estradiol/analysis , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis
3.
Environ Sci Pollut Res Int ; 31(9): 13455-13470, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253830

ABSTRACT

Hydroelectric power is the main source of electrical energy in Brazil. Electrical energy providers have the duty to monitor water quality in reservoirs to preserve water quality and support best management practices that enable multiple water uses, including fish production. In this context, the objectives of this study were (i) to perform a historical evaluation of water quality in Três Marias Reservoir, (ii) to present an optimization of the water quality monitoring network, and (iii) to evaluate the evolution and impact of fish farming upon surface water quality by using secondary data measured in situ and remote sensing. A systematic approach was applied to analyze historical water quality data. Principal component analysis (PCA) and cluster analysis (CA) were applied to identify the most important parameters and monitoring points. Images obtained from Sentinel 2 were treated by contrast to quantify simple and weighted densities of fish farming activities in the region while regression analysis was performed to verify correlations between these densities and water quality parameters. Results showed that the pH and total suspended solids were the most important parameters for characterizing water quality, especially near tributaries, and that monitoring points could be grouped into three clusters (upstream, central, and downstream regions) with distinct water quality conditions. The PCA indicated that there is no redundance among parameters nor monitoring stations and that areas near tributaries must be prioritized for monitoring as these are important sources of suspended solids. Remote sensing images showed that the area occupied by fish farms has increased in the reservoir from 2016 to 2022 and the methodology used for this purpose in this study may be applied to other bodies of water. Chlorophyll-a showed a direct relationship with the density of fish farms indicating a possible influence of nutrient input to the reservoir by this activity. These results provide valuable information to support decision-making related to water management in the reservoir.


Subject(s)
Environmental Monitoring , Water Quality , Environmental Monitoring/methods , Brazil , Eutrophication , Fisheries
4.
Sci Total Environ ; 902: 165964, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37541505

ABSTRACT

Monitoring water quality in reservoirs is essential for the maintenance of aquatic ecosystems and socioeconomic services. In this scenario, the observation of abrupt elevations of physicochemical parameters, such as turbidity and other indicators, can signal anomalies associated with the occurrence of critical events, requiring operational actions and planning to mitigate negative environmental impacts on water resources. This work aims to integrate Machine Learning methods specialized in anomaly detection with data obtained from remote sensing images to identify with high turbidity events in the surface water of the Três Marias Hydroelectric Reservoir. Four distinct threshold-based scenarios were evaluated, in which the overall performance, based on F1-score, showed decreasing trends as the thresholds became more restrictive. In general, the anomaly identification maps generated through the models ratified the applicability of the methods in the diagnosis of surface water in reservoirs in distinct hydrological contexts (dry and wet), effectively identifying locations with anomalous turbidity values.

5.
Molecules ; 27(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080290

ABSTRACT

Benzophenone-3, fipronil and propylparaben are micropollutants that are potential threats to ecosystems and have been detected in aquatic environments. However, studies involving the investigation of new technologies aiming at their elimination from these matrices, such as advanced oxidation processes, remain scarce. In this study, different iron complexes (FeCit, FeEDTA, FeEDDS and FeNTA) were evaluated for the degradation of a mixture of these micropollutants (100 µg L−1 each) spiked in municipal wastewater treatment plant (MWWTP) effluent at pH 6.9 by solar photo-Fenton. Operational parameters (iron and H2O2 concentration and Fe/L molar ratio) were optimized for each complex. Degradation efficiencies improved significantly by increasing the concentration of iron complexes (1:1 Fe/L) from 12.5 to 100 µmol L−1 for FeEDDS, FeEDTA and FeNTA. The maximum degradation reached with FeCit for all iron concentrations was limited to 30%. Different Fe/L molar ratios were required to maximize the degradation efficiency for each ligand: 1:1 for FeNTA and FeEDTA, 1:3 for FeEDDS and 1:5 for FeCit. Considering the best Fe/L molar ratios, higher degradation rates were reached using 5.9 mmol L−1 H2O2 for FeNTA and FeEDTA compared to 1.5 and 2.9 mmol L−1 H2O2 for FeEDDS and FeCit, respectively. Acute toxicity to Canton S. strain D. melanogaster flies reduced significantly after treatment for all iron complexes, indicating the formation of low-toxicity by-products. FeNTA was considered the best iron complex source in terms of the kinetic constant (0.10 > 0.063 > 0.051 > 0.036 min−1 for FeCit, FeNTA, FeEDTA and FeEDDS, respectively), organic carbon input and cost-benefit (USD 327 m−3 > USD 20 m−3 > USD 16 m−3 > USD 13 m−3 for FeEDDS, FeCit, FeEDTA and FeNTA, respectively) when compared to the other tested complexes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Animals , Drosophila melanogaster , Ecosystem , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical/chemistry
6.
Sci Total Environ ; 801: 149599, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34467925

ABSTRACT

The effectiveness of advanced technologies on eliminating antibiotic resistant bacteria (ARB) and resistance genes (ARGs) from wastewaters have been recently investigated. Solar photo-Fenton has been proven effective in combating ARB and ARGs from Municipal Wastewater Treatment Plant effluent (MWWTPE). However, most of these studies have relied solely on cultivable methods to assess ARB removal. This is the first study to investigate the effect of solar photo-Fenton upon ARB and ARGs in MWWTPE by high throughput metagenomic analysis (16S rDNA sequencing and Whole Genome Sequencing). Treatment efficiency upon priority pathogens and resistome profile were also investigated. Solar photo-Fenton (30 mg L-1 of Fe2+ intermittent additions and 50 mg L-1 of H2O2) reached 76-86% removal of main phyla present in MWWTPE. An increase in Proteobacteria abundance was observed after solar photo-Fenton and controls in which H2O2 was present as an oxidant (Fenton, H2O2 only, solar/H2O2). Hence, tolerance mechanisms presented by this group should be further assessed. Solar photo-Fenton achieved complete removal of high priority Staphylococcus and Enterococcus, as well as Klebsiella pneumoniae and Pseudomonas aeruginosa. Substantial reduction of intrinsically multi-drug resistant bacteria was detected. Solar photo-Fenton removed nearly 60% of ARGs associated with sulfonamides, macrolides, and tetracyclines, and complete removal of ARGs related to ß-lactams and fluoroquinolones. These results indicate the potential of using solar-enhanced photo-Fenton to limit the spread of antimicrobial resistance, especially in developing tropical countries.


Subject(s)
Hydrogen Peroxide , Microbiota , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Hydrogen-Ion Concentration , Wastewater
7.
J Environ Manage ; 285: 112204, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33618138

ABSTRACT

This work aimed to assess the elimination and inactivation of resistance-conferring plasmids (RCPs) present in suspension in secondary wastewater by solar photo-Fenton as these are important vectors for the dissemination of antimicrobial resistance. Experiments were performed in synthetic secondary wastewater (SWW) and municipal wastewater treatment plant effluent (MWWTPE). Solar photo-Fenton (50 mg L-1 of H2O2 and 30 mg L-1 of Fe2+) was carried out for 60 min at neutral pH by applying the intermittent iron addition strategy. The removal of RCPs was assessed by Real-Time Polymerase Chain Reaction (qPCR). The transformation of competent non-resistant E. coli was used to evaluate the inactivation of target RCPs harboring antibiotic resistance genes (ARGs) to ampicillin (pSB1A2) or kanamycin (pSB1K3) after treatment and controls. Solar photo-Fenton completely removed RCPs initially present in both matrixes (SWW and MWWTPE), showing enhanced performance compared to the dark Fenton process. Both RCPs were inactivated after 30 min of solar photo-Fenton treatment, while 60 min were necessary to achieve the same effect for the dark Fenton reaction under similar conditions. These results indicate the potential of solar photo-Fenton to improve wastewater quality and reduce the spread of antimicrobial resistance in the environment by hampering the discharge of cell-free RCPs present in suspension in MWWTP onto environmental waters.


Subject(s)
Wastewater , Water Pollutants, Chemical , Anti-Bacterial Agents , DNA , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Hydrogen Peroxide , Oxidation-Reduction , Plasmids/genetics
8.
Environ Sci Pollut Res Int ; 28(19): 23582-23594, 2021 May.
Article in English | MEDLINE | ID: mdl-32638314

ABSTRACT

As the presence of antibiotics in environmental waters enhances antimicrobial resistance, photolysis and heterogeneous photocatalysis of chloramphenicol (CAP) were evaluated in deionized water (DW) and in sewage treatment plant (STP) effluent under black light and solar irradiation. Processes were compared in terms of CAP degradation, reaction kinetics, and electrical energy per order, as well as regarding theoretical toxicity, biodegradability, carcinogenicity, and mutagenicity of transformation products (TPs). Rate constants obtained under photolysis (0.008 min-1) and heterogeneous photocatalysis (0.18 min-1) only differed in DW. This is due to the generation of photo-active reactive oxygen species (HO· and HO2·-/O2·-) under photolysis in STP effluent, as verified by experiments in the presence of 2-propanol and chloroform. Natural organic matter and HCO3- were the main responsible for reducing CAP degradation in STP effluent. Fifteen TPs were identified during both processes in DW, 13 of which are unprecedented. TPs were formed mainly via HO· preferential attack on the aromatic ring and on the α-carbon, and some of them were classified as persistent and toxic, genotoxic, or carcinogenic by Toxtree software. Results confirm that solar photocatalysis is less costly than to photocatalysis under black light for wastewater treatment.


Subject(s)
Chloramphenicol , Water Pollutants, Chemical , Kinetics , Photolysis , Water , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 740: 140152, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32927549

ABSTRACT

This is the first study to investigate ethylenediamine-N,N'-disuccinic acid (EDDS)/photo-Fenton process to polish real wastewater containing pesticides for possible water reuse. To this end, simultaneous degradation of pesticides ametrine, atrazine, imidacloprid and tebuthiuron was evaluated in distilled water (DW) and in sewage treatment plant (STP) effluent at initial pH 6.0. Several operational parameters (Fe3+-EDDS concentration, Fe3+-EDDS molar ratio, EDDS addition patterns and radiation source) were evaluated. 80-98% removal of target pesticides were obtained in DW using 30 µmol L-1 of Fe3+-EDDS with a molar ratio of 1:2 (300 µmol L-1 of H2O2). In addition, the proposed Fe3+-EDDS photo-Fenton at pH 6 was more efficient than classic photo-Fenton at pH 2.7 (30-84% removal). Experiments conducted in the presence of radical trapping agents (2-propanol or chloroform) revealed that HO• was the most active radical during treatment. Matrix composition strongly affected the degradation of target pesticides as a six-fold higher concentration of reagents (180 µmol L-1 of Fe3+-EDDS and 1800 µmol L-1 of H2O2) was needed to reach the same efficiency in STP compared to DW. Even so, first order rate constants corresponding to the degradation of pesticides in DW (k = 0.098-0.85 min-1) were nearly two-fold higher than in STP (k = 0.079-0.49 min-1) under the same radiation source (black-light or solar radiation). Finally, acute toxicity towards Vibrio fischeri and Drosophila melanogaster flies, and antibacterial activity assessed for Escherichia coli were eliminated after the application of the proposed treatment, thus indicating environmental safety for either discharge or reuse of treated wastewater for crop irrigation in agriculture.


Subject(s)
Anti-Infective Agents , Pesticides , Water Pollutants, Chemical/analysis , Animals , Drosophila melanogaster , Hydrogen Peroxide , Iron , Oxidation-Reduction
10.
J Environ Manage ; 269: 110756, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32560986

ABSTRACT

This study presents the degradation of fipronil in sewage treatment plant (STP) effluent by photo-Fenton at near neutral pH (pH 6.0) using Fe3+/Citrate complex. 83% of fipronil degradation was reached using a molar iron/citrate ratio of 1:3 (192 µmol L-1 of Fe3+/576 µmol L-1 of citrate). Photo-Fenton reduced the toxicity of treated solutions as according to the survival of Drosophila melanogaster exposed to non-treated and treated samples. Control experiments performed in distilled water using 32 µmol L-1 of Fe3+/96 µmol L-1 of citrate achieved 98% of fipronil degradation within 100 kJ m-2 (UV-A radiation, k = 30 × 10-3 kJ-1 m2 and t1/2 = 23 kJ m-2), thus indicating that fipronil degradation is impaired by natural organic matter and inorganic ions present in STP effluent. Degradation was faster under solar radiation, as the same efficiency (98%) was obtained after 75 kJ m-2 (k = 63 × 10-3 kJ-1 m2 and t1/2 = 11 kJ m-2). In addition, pathways of fipronil degradation using Fe3+/Citrate under solar and UV-A radiation were investigated and transformation products proposed. Results revealed that the HO• attack occurred preferentially in the pyrazole ring. Eight transformation products were identified by UHPLC-Q-TOF-MS and four are unprecedented in the literature. Control experiments in distilled water demonstrated that toxicity reduction is related to fipronil degradation and that transformation products are less toxic than fipronil. Furthermore, toxicity of STP fortified with fipronil was reduced after photo-Fenton. These results demonstrate the feasibility of applying this process using Fe3+/Citrate complex for fipronil degradation in a real matrix.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Animals , Drosophila melanogaster , Ferric Compounds , Oxidation-Reduction , Pyrazoles
11.
J Hazard Mater ; 372: 17-36, 2019 06 15.
Article in English | MEDLINE | ID: mdl-29728279

ABSTRACT

This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the µg L-1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17ß-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed.

12.
Environ Sci Pollut Res Int ; 26(5): 4324-4336, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29740769

ABSTRACT

This study aimed at investigating the degradation of fungicide carbendazim (CBZ) via photo-Fenton reactions in artificially and solar irradiated photoreactors at laboratory scale and in a semi-pilot scale Raceway Pond Reactor (RPR), respectively. Acute toxicity was monitored by assessing the sensibility of bioluminescent bacteria (Aliivibrio fischeri) to samples taken during reactions. In addition, by-products formed during solar photo-Fenton were identified by liquid chromatography coupled to mass spectrometry (UFLC-MS). For tests performed in lab-scale, two artificial irradiation sources were compared (UVλ > 254nm and UV-Visλ > 320nm). A complete design of experiments was performed in the semi-pilot scale RPR in order to optimize reaction conditions (Fe2+ and H2O2 concentrations, and water depth). Efficient degradation of carbendazim (> 96%) and toxicity removal were achieved via artificially irradiated photo-Fenton under both irradiation sources. Control experiments (UV photolysis and UV-Vis peroxidation) were also efficient but led to increased acute toxicity. In addition, H2O2/UVλ > 254nm required longer reaction time (60 minutes) when compared to the photo-Fenton process (less than 1 min). While Fenton's reagent achieved high CBZ and acute toxicity removal, its efficiency demands higher concentration of reagents in comparison to irradiated processes. Solar photo-Fenton removed carbendazim within 15 min of reaction (96%, 0.75 kJ L-1), and monocarbomethoxyguanidine, benzimidazole isocyanate, and 2-aminobenzimidazole were identified as transformation products. Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.


Subject(s)
Benzimidazoles/analysis , Carbamates/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods , Aliivibrio fischeri/drug effects , Benzimidazoles/radiation effects , Benzimidazoles/toxicity , Carbamates/radiation effects , Carbamates/toxicity , Equipment Design , Models, Theoretical , Photolysis , Toxicity Tests, Acute , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicity
13.
Environ Sci Pollut Res Int ; 26(5): 4521-4536, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29998445

ABSTRACT

In the present study, a multistage route is proposed for the treatment of biodiesel industry wastewater (BWW) containing around 1000 mg L-1 of total organic carbon (TOC), 3500 mg L-1 of chemical oxygen demand (COD), and 1325 mg L-1 of oil and grease. Initially, BWW aerobic biodegradability was assessed via Zhan-Wellens biodegradability test to confirm the appropriate treatment route. Then, a hybrid moving bed bioreactor (MBBR) system was chosen as the first treatment stage. The hybrid MBBR achieved 69 and 68% removal of COD and TOC removals, respectively, and provided great conditions for biomass growth. The bacterial community present in the hybrid MBBR was investigated by PCR-DGGE and potential biodegraders were identified such as: members of Desulfuromonadales, Nocardioidaceae and Pseudomonadaceae. Since biodegradation in the hybrid MBBR alone was unable to meet quality requirements, advanced oxidation processes, such as Fenton and photo-Fenton, were optimized for application as additional treatment stages. Physicochemical properties and acute toxicity of BWW were analyzed after the multistage routes: hybrid MBBR + Fenton, hybrid MBBR + photo-Fenton and hybrid MBBR + UV-C254nm/H2O2. Hybrid MBBR + Fenton or photo-Fenton showed overall COD removal efficiencies greater than 95% and removed acute toxicity, thus being appropriate integrated routes for the treatment of real BWW. Graphical abstract ᅟ.


Subject(s)
Biofuels/analysis , Bioreactors/microbiology , Microbiota , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Aliivibrio fischeri/drug effects , Biofuels/radiation effects , Biofuels/toxicity , Biological Oxygen Demand Analysis , Biomass , Hydrogen Peroxide/chemistry , Iron/chemistry , Models, Theoretical , Oxidation-Reduction , Toxicity Tests, Acute , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicity
14.
Environ Sci Pollut Res Int ; 24(7): 6222-6232, 2017 Mar.
Article in English | MEDLINE | ID: mdl-26865484

ABSTRACT

In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m-3 for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.


Subject(s)
Photolysis , Recycling/methods , Textiles , Ultraviolet Rays , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Carboxylic Acids/chemistry , Catalysis , Coloring Agents/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction
15.
Environ Sci Pollut Res Int ; 24(14): 12515-12528, 2017 May.
Article in English | MEDLINE | ID: mdl-27566160

ABSTRACT

Solar photo-Fenton represents an innovative and low-cost option for the treatment of recalcitrant industrial wastewater, such as the textile wastewater. Textile wastewater usually shows high acute toxic and variability and may be composed of many different chemical compounds. This study aimed at optimizing and validating solar photo-Fenton treatment of textile wastewater in a semi-pilot compound parabolic collector (CPC) for toxicity removal and wastewater reclamation. In addition, treated wastewater reuse feasibility was investigated through pilot tests. Experimental design performed in this study indicated optimum condition for solar photo-Fenton reaction (20 mg L-1 of Fe2+ and 500 mg L-1 of H2O2; pH 2.8), which achieved 96 % removal of dissolved organic carbon (DOC) and 99 % absorbance removal. A toxicity peak was detected during treatment, suggesting that highly toxic transformation products were formed during reaction. Toxic intermediates were properly removed during solar photo-Fenton (SPF) treatment along with the generation of oxalic acid as an ultimate product of degradation and COS increase. Different samples of real textile wastewater were treated in order to validate optimized treatment condition with regard to wastewater variability. Results showed median organic carbon removal near 90 %. Finally, reuse of treated textile wastewater in both dyeing and washing stages of production was successful. These results confirm that solar photo-Fenton, as a single treatment, enables wastewater reclamation in the textile industry. Graphical abstract Solar photo-Fenton as a revolutionary treatment technology for "closing-the-loop" in the textile industry.


Subject(s)
Hydrogen Peroxide/chemistry , Wastewater/chemistry , Iron/chemistry , Oxidation-Reduction , Textiles , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry
16.
Environ Sci Pollut Res Int ; 24(7): 6165-6175, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27234833

ABSTRACT

This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.


Subject(s)
Hydrogen Peroxide/chemistry , Industrial Waste/analysis , Iron/chemistry , Sewage , Textiles , Water Purification/methods , Sewage/analysis , Sewage/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL