Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 199(1): 132-149, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38518100

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of over 8000 chemicals, many of which are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and the perfluoroalkyl ether acid congener bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model, and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive bioaccumulation and toxicity assessments for PFAS.


Subject(s)
Fluorocarbons , Protein Binding , Serum Albumin , Animals , Cattle , Humans , Rats , Fluorocarbons/chemistry , Fluorocarbons/toxicity , Fluorocarbons/metabolism , Serum Albumin/metabolism , Serum Albumin/chemistry , Serum Albumin, Human/metabolism , Serum Albumin, Human/chemistry , Species Specificity , Swine
2.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014292

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of over 8,000 chemicals that are persistent, bioaccumulative, and toxic to humans, livestock, and wildlife. Serum protein binding affinity is instrumental in understanding PFAS toxicity, yet experimental binding data is limited to only a few PFAS congeners. Previously, we demonstrated the usefulness of a high-throughput, in vitro differential scanning fluorimetry assay for determination of relative binding affinities of human serum albumin for 24 PFAS congeners from 6 chemical classes. In the current study, we used this differential scanning fluorimetry assay to comparatively examine differences in human, bovine, porcine, and rat serum albumin binding of 8 structurally informative PFAS congeners from 5 chemical classes. With the exception of the fluorotelomer alcohol 1H,1H,2H,2H-perfluorooctanol (6:2 FTOH), each PFAS congener bound by human serum albumin was also bound by bovine, porcine, and rat serum albumin. The critical role of the charged functional headgroup in albumin binding was supported by the inability of serum albumin of each species tested to bind 6:2 FTOH. Significant interspecies differences in serum albumin binding affinities were identified for each of the bound PFAS congeners. Relative to human albumin, perfluoroalkyl carboxylic and sulfonic acids were bound with greater affinity by porcine and rat serum albumin, and perfluoroalkyl ether congeners bound with lower affinity to porcine and bovine serum albumin. These comparative affinity data for PFAS binding by serum albumin from human, experimental model and livestock species reduce critical interspecies uncertainty and improve accuracy of predictive toxicity assessments for PFAS.

3.
Environ Sci Technol ; 57(26): 9567-9579, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37340551

ABSTRACT

Central North Carolina (NC) is highly contaminated with per- and polyfluoroalkyl substances (PFAS), in part due to local fluorochemical production. Little is known about the exposure profiles and long-term health impacts for humans and animals that live in nearby communities. In this study, serum PFAS concentrations were determined using liquid chromatography high-resolution mass spectrometry and diagnostic clinical chemistry endpoints were assessed for 31 dogs and 32 horses that reside in Gray's Creek NC at households with documented PFAS contamination in their drinking water. PFAS were detected in every sample, with 12 of the 20 PFAS detected in ≥50% of samples from each species. The average total PFAS concentrations in horses were lower compared to dogs who had higher concentrations of PFOS (dogs 2.9 ng/mL; horses 1.8 ng/mL), PFHxS (dogs 1.43 ng/mL, horses < LOD), and PFOA (dogs 0.37 ng/mL; horses 0.10 ng/mL). Regression analysis highlighted alkaline phosphatase, glucose, and globulin proteins in dogs and gamma glutamyl transferase in horses as potential biomarkers associated with PFAS exposure. Overall, the results of this study support the utility of companion animal and livestock species as sentinels of PFAS exposure differences inside and outside of the home. As in humans, renal and hepatic health in domestic animals may be sensitive to long-term PFAS exposures.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Environmental Pollutants , Fluorocarbons , Water Pollutants, Chemical , Humans , Dogs , Horses , Animals , North Carolina , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Drinking Water/analysis , Drinking Water/chemistry , Biomarkers , Alkanesulfonic Acids/analysis , Environmental Pollutants/analysis
4.
Behav Brain Res ; 452: 114554, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37356670

ABSTRACT

Major depressive disorder (MDD) is a debilitating and costly human condition. Treatment for MDD relies heavily on the use of antidepressants that are slow to produce mood-related changes and are not effective in all patients, such as selective serotonin reuptake inhibitors (SSRIs). Several novel compounds, including negative allosteric modulators of GABA-A receptors containing the α5-subunit (GABA-NAMs), are under investigation for potential fast acting therapeutic use in MDD. Preclinical evidence that these compounds produce a rapid antidepressant-like response comes primarily from simple tests of escape behavior and preference for rewarding stimuli after chronic stress. To increase the ethological relevance of these compounds, we tested the hypothesis that the GABA-NAM, L-655,708, would produce an antidepressant-like response in more complex stress-sensitive social and sex behaviors, which are of relevance to the symptoms of human depression. In male rats subjected to chronic restraint stress, injection of L-655,708 increased reward in a sexual conditioned place preference task, increased male sexual activity with a receptive female, and re-established male social dominance hierarchies within 24 h. We also report increased sucrose preference in the social defeat stress (SDS) model of depression following GABA-NAM administration, demonstrating that its antidepressant-like actions are independent of the type of chronic stress administered. This work extends the impact of GABA-NAMs beyond traditional tests of anhedonia and further supports the development of alpha5 subunit-selective GABA-NAMs as a potential fast-acting therapeutic approach for treating human MDD.


Subject(s)
Depressive Disorder, Major , Receptors, GABA , Rats , Humans , Male , Female , Animals , Depressive Disorder, Major/drug therapy , Antidepressive Agents/pharmacology , Receptors, GABA-A/physiology , Sexual Behavior , gamma-Aminobutyric Acid
5.
Front Toxicol ; 4: 881584, 2022.
Article in English | MEDLINE | ID: mdl-35480070

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.

6.
Brain Stimul ; 14(5): 1219-1225, 2021.
Article in English | MEDLINE | ID: mdl-34400378

ABSTRACT

BACKGROUND: Repetitive Transcranial Magnetic Stimulation (rTMS) has shown initial promise in combating age-related cognitive decline and dementia. The nature and severity of cognitive aging, however, varies markedly between individuals. OBJECTIVE/HYPOTHESIS: We hypothesized that the distinct constellation of brain changes responsible for individual differences in cognitive aging might influence the response to rTMS. METHODS: Cognitive effects of rTMS were evaluated using a rat model of cognitive aging in which aged rats are classified as Aged-Impaired (AI) or -Unimpaired (AU) relative to young (Y) according to their performance in the Morris water maze. Several weeks later, following presentation of a sample odor in an olfactory recognition task, rats received either sham (Y, n = 9; AU, n = 8; AI, n = 9) or intermittent Theta Burst Stimulation (Y, n = 8; AU, n = 8; AI, n = 9). Memory was tested 24 h later. RESULTS: Recognition memory in the sham and stimulated conditions depended on pre-treatment cognitive status in the aged rats. Y and AU sham rats displayed robust odor recognition, whereas sham-treated AI rats exhibited no retention. In contrast, rTMS treated AI rats showed robust retention, comparable in magnitude to Y, whereas the AU stimulated scored at chance. CONCLUSION: Our results are consistent with a perspective that the unique neurobiology associated with variability in cognitive aging modulates the response to rTMS. Protocols with documented efficacy in young adults may have unexpected outcomes in aging or neurodegenerative conditions, requiring individualized approaches.


Subject(s)
Cognitive Aging , Transcranial Magnetic Stimulation , Aging , Animals , Brain , Cognition , Rats
7.
J Intellect Disabil ; : 1744629520975554, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33406967

ABSTRACT

Interactive digital art can be a beneficial therapeutic intervention for a variety of populations, but specifically for the population of intellectual and developmental disabilities. Interactive digital art uses the engagement of the participant to create a digital form of art. The purpose of this literature review is to explore the effects that interactive art has on individuals with intellectual and developmental disabilities. Interactive arts discussed were used in a variety of settings ranging from sand art, to using video games, or interactive art exhibits. Sand art and other digital painting methods were proven to be beneficial in improving cognitive functioning and social aspects of those with intellectual disabilities. While exploring the various settings, participant feedback was given in association with using interactive digital art.

SELECTION OF CITATIONS
SEARCH DETAIL
...