Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Hear Res ; 430: 108707, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36773540

ABSTRACT

The risk of insertion trauma in cochlear implantation is determined by the interplay between individual cochlear anatomy and electrode insertion mechanics. Whereas patient anatomy cannot be changed, new surgical techniques, devices for cochlear monitoring, drugs, and electrode array designs are continuously being developed and tested, to optimize the insertion mechanics and prevent trauma. Preclinical testing of these developments is a crucial step in feasibility testing and optimization for clinical application. Human cadaveric specimens allow for the best simulation of an intraoperative setting. However, their availability is limited and it is not possible to conduct repeated, controlled experiments on the same sample. A variety of artificial cochlear models have been developed for electrode insertion studies, but none of them were both anatomically and mechanically representative for surgical insertion into an individual cochlea. In this study, we developed anatomically representative models of the scala tympani for surgical insertion through the round window, based on microCT images of individual human cochleae. The models were produced in transparent material using commonly-available 3D printing technology at a desired scale. The anatomical and mechanical accuracy of the produced models was validated by comparison with human cadaveric cochleae. Mechanical evaluation was performed by recording insertion forces, counting the number of inserted electrodes and grading tactile feedback during manual insertion of a straight electrode by experienced cochlear implant surgeons. Our results demonstrated that the developed models were highly representative for the anatomy of the original cochleae and for the insertion mechanics in human cadaveric cochleae. The individual anatomy of the produced models had a significant impact on the insertion mechanics. The described models have a promising potential to accelerate preclinical development and testing of atraumatic insertion techniques, reducing the need for human cadaveric material. In addition, realistic models of the cochlea can be used for surgical training and preoperative planning of patient-tailored cochlear implantation surgery.


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , Scala Tympani/surgery , Cochlea/diagnostic imaging , Cochlea/surgery , Electrodes, Implanted , Cadaver
2.
Sci Rep ; 13(1): 2191, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750646

ABSTRACT

Cochlear implant restores hearing loss through electrical stimulation of the hearing nerve from within the cochlea. Unfortunately, surgical implantation of this neuroprosthesis often traumatizes delicate intracochlear structures, resulting in loss of residual hearing and compromising hearing in noisy environments and appreciation of music. To avoid cochlear trauma, insertion techniques and devices have to be adjusted to the cochlear microanatomy. However, existing techniques were unable to achieve a representative visualization of the human cochlea: classical histology damages the tissues and lacks 3D perspective; standard microCT fails to resolve the cochlear soft tissues; and previously used X-ray contrast-enhancing staining agents are destructive. In this study, we overcame these limitations by performing contrast-enhanced microCT imaging (CECT) with a novel polyoxometalate staining agent Hf-WD POM. With Hf-WD POM-based CECT, we achieved nondestructive, high-resolution, simultaneous, 3D visualization of the mineralized and soft microstructures in fresh-frozen human cochleae. This enabled quantitative analysis of the true intracochlear dimensions and led to anatomical discoveries, concerning surgically-relevant microstructures: the round window membrane, the Rosenthal's canal and the secondary spiral lamina. Furthermore, we demonstrated that Hf-WD POM-based CECT enables quantitative assessment of these structures as well as their trauma.


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , X-Ray Microtomography , Cochlea/pathology , Cochlear Implantation/methods , Hearing , Electrodes, Implanted
3.
Sci Rep ; 12(1): 19234, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357503

ABSTRACT

In cochlear implant surgery, insertion of perimodiolar electrode arrays into the scala tympani can be complicated by trauma or even accidental translocation of the electrode array within the cochlea. In patients with partial hearing loss, cochlear trauma can not only negatively affect implant performance, but also reduce residual hearing function. These events have been related to suboptimal positioning of the cochlear implant electrode array with respect to critical cochlear walls of the scala tympani (modiolar wall, osseous spiral lamina and basilar membrane). Currently, the position of the electrode array in relation to these walls cannot be assessed during the insertion and the surgeon depends on tactile feedback, which is unreliable and often comes too late. This study presents an image-guided cochlear implant device with an integrated, fiber-optic imaging probe that provides real-time feedback using optical coherence tomography during insertion into the human cochlea. This novel device enables the surgeon to accurately detect and identify the cochlear walls ahead and to adjust the insertion trajectory, avoiding collision and trauma. The functionality of this prototype has been demonstrated in a series of insertion experiments, conducted by experienced cochlear implant surgeons on fresh-frozen human cadaveric cochleae.


Subject(s)
Cochlear Implantation , Cochlear Implants , Humans , Cochlear Implantation/methods , Cochlea/diagnostic imaging , Cochlea/surgery , Cochlea/injuries , Basilar Membrane , Scala Tympani/diagnostic imaging , Scala Tympani/surgery , Electrodes, Implanted
4.
J Clin Med ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615042

ABSTRACT

Advancements in intracochlear diagnostics, as well as prosthetic and regenerative inner ear therapies, rely on a good understanding of cochlear microanatomy. The human cochlea is very small and deeply embedded within the densest skull bone, making nondestructive visualization of its internal microstructures extremely challenging. Current imaging techniques used in clinical practice, such as MRI and CT, fall short in their resolution to visualize important intracochlear landmarks, and histological analysis of the cochlea cannot be performed on living patients without compromising their hearing. Recently, optical coherence tomography (OCT) has been shown to be a promising tool for nondestructive micrometer resolution imaging of the mammalian inner ear. Various studies performed on human cadaveric tissue and living animals demonstrated the ability of OCT to visualize important cochlear microstructures (scalae, organ of Corti, spiral ligament, and osseous spiral lamina) at micrometer resolution. However, the interpretation of human intracochlear OCT images is non-trivial for researchers and clinicians who are not yet familiar with this novel technology. In this study, we present an atlas of intracochlear OCT images, which were acquired in a series of 7 fresh and 10 fresh-frozen human cadaveric cochleae through the round window membrane and describe the qualitative characteristics of visualized intracochlear structures. Likewise, we describe several intracochlear abnormalities, which could be detected with OCT and are relevant for clinical practice.

5.
Front Oncol ; 11: 643550, 2021.
Article in English | MEDLINE | ID: mdl-34026618

ABSTRACT

BACKGROUND: The endoscopic endonasal transsphenoidal approach (EETA) is an established technique for the resection of a large variety of benign sellar and suprasellar lesions, mostly pituitary adenomas. It has clear advantages over the microscopic approach, like a superior close-up view of the relevant anatomy and the tumor-gland interface, an enlarged working angle, as well as an increased panoramic vision inside the surgical area. We have been performing the EETA for over a decade, and this study will focus on perioperative and postoperative outcomes and complications and their association with the learning curve. MATERIAL AND METHODS: All patients in our tertiary referral center (n = 369) undergoing an EETA for a lesion of the sellar and suprasellar region between January 1st 2008 and December 31st 2018 were included, and data were retrospectively retrieved from the electronic patient records. RESULTS: Median follow-up after surgery was 55 months. Pituitary adenomas (n = 322) were the most frequent pathology. Headache (43.4%) and loss of vision (29.3%) were the most common presenting symptoms. Median procedure duration was significantly longer during the initial 5 years (106 versus 79 minutes; p <0.0001), but incidence of peri- and postoperative CSF leaks in the early years was not significantly higher. Knosp grade >2 was associated with perioperative CSF leak (p =0.002), and perioperative CSF leak was associated with postoperative CSF leak (p <0.001). Almost all cases of meningitis were preceded by a postoperative CSF leak. In 22.4% of patients, tumor recurrence required additional therapy. Perioperative (iatrogenic) mortality was 0.8%. The overall hospital stay decreased over time from an average of 7 to 5 days, and the case load increased yearly (p =0.015). CONCLUSION: The EETA is an excellent technique with complication rates comparable to or even lower than those in large microsurgical series in the literature. EETA has a significant learning curve affecting the procedure duration. Throughout the first 10 years following the transition from the microscopic approach to the EETA in our cohort, the caseload increased and hospital stay was reduced, while no increase in peri- and postoperative complications was observed.

6.
Sci Rep ; 9(1): 14271, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582808

ABSTRACT

The human cochlea is deeply embedded in the temporal bone and surrounded by a thick otic capsule, rendering its internal structure inaccessible for direct visualization. Clinical imaging techniques fall short of their resolution for imaging of the intracochlear structures with sufficient detail. As a result, there is a lack of knowledge concerning best practice for intracochlear therapy placement, such as cochlear implantation. In the past decades, optical coherence tomography (OCT) has proven valuable for non-invasive, high-resolution, cross-sectional imaging of tissue microstructure in various fields of medicine, including ophthalmology, cardiology and dermatology. There is an upcoming interest for OCT imaging of the cochlea, which so far was mostly carried out in small animals. In this temporal bone study, we focused on high-resolution imaging of the human cochlea. The cochlea was approached through mastoidectomy and posterior tympanotomy, both standard surgical procedures. A commercially available spectral-domain OCT imaging system was used to obtain high-resolution images of the cochlear hook region through the intact round window membrane in four cadaveric human temporal bones. We discuss the qualitative and quantitative characteristics of intracochlear structures on OCT images and their importance for cochlear implant surgery.


Subject(s)
Cochlea/diagnostic imaging , Tomography, Optical Coherence/methods , Cadaver , Cochlea/surgery , Humans , Image Processing, Computer-Assisted/methods , Round Window, Ear/diagnostic imaging , Round Window, Ear/surgery
7.
Int Orthop ; 41(9): 1865-1873, 2017 09.
Article in English | MEDLINE | ID: mdl-28721498

ABSTRACT

ABASTRACT: INTRODUCTION: Although regularly ignored, there is growing evidence that posterior tibial plateau fractures affect the functional outcome. The goal of this study was to assess the incidence of posterior column fractures and its impact on functional outcome and general health status. We aimed to identify all clinical variables that influence the outcome and improve insights in the treatment strategies. METHODS: A retrospective cohort study including 218 intra-articular tibial plateau fractures was conducted. All fractures were reclassified and applied treatment was assessed according to the updated three-column concept. Relevant demographic and clinical variables were studied. The patient reported outcome was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). RESULTS: Median follow-up was 45.5 (IQR 24.9-66.2) months. Significant outcome differences between operatively and non-operatively treated patients were found for all KOOS subscales. The incidence of posterior column fractures was 61.9%. Posterior column fractures, sagittal malalignment and an increased complication rate were associated with poor outcome. Patients treated according to the updated three-column concept, showed significantly better outcome scores than those patients who were not. We could not demonstrate the advantage of posterior column fracture fixation, due to a limited patient size. CONCLUSION: Our data indicates that implementation of the updated three-column classification concept may improve the surgical outcome of tibial plateau fractures. Failure to recognize posterior column fractures may lead to inappropriate utilization of treatment techniques. The current concept allows us to further substantiate the importance of reduction and fixation of posterior column fractures with restoration of the sagittal alignment. LEVEL OF EVIDENCE: 3.


Subject(s)
Fracture Fixation, Internal/methods , Fracture Fixation/methods , Intra-Articular Fractures/therapy , Tibial Fractures/therapy , Adult , Aged , Cohort Studies , Female , Humans , Incidence , Intra-Articular Fractures/diagnosis , Intra-Articular Fractures/epidemiology , Knee Injuries/diagnosis , Knee Injuries/physiopathology , Knee Injuries/therapy , Knee Joint/physiopathology , Male , Middle Aged , Osteoarthritis, Knee/physiopathology , Retrospective Studies , Tibia/injuries , Tibia/surgery , Tibial Fractures/diagnosis , Tibial Fractures/epidemiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...