Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 145: 106727, 2020 04.
Article in English | MEDLINE | ID: mdl-31899222

ABSTRACT

Trichophoreae is a nearly cosmopolitan Cyperaceae tribe that contains ~17 species displaying striking variation in size, inflorescence complexity, and perianth morphology. Although morphologically distinct, the status of its three genera (Cypringlea, Oreobolopsis and Trichophorum) is controversial because recent phylogenetic studies have suggested they might not be reciprocally monophyletic. However, previous analyses have shown conflicting topologies and consistently poor support due to an initial rapid diversification of the tribe. We analysed restriction-site associated DNA sequencing (RADseq) data from nearly all species of the clade, combined with five Sanger-based markers (matK, ndhF, rps16, ETS-1f, ITS) sampled extensively within species. This approach allowed us to resolve deep and shallow relationships within Trichophoreae for the first time, despite an anomaly zone spanning several successive short branches that produced considerable gene tree incongruence. Analyses reveal a primary phylogenetic split of the tribe into two clades roughly corresponding to an East Asian-North American disjunction that dates back to the mid-Miocene, with both clades comprised of a mixture of reduced unispicate and larger taxa with highly compound inflorescences. Morphological characters traditionally used in the circumscription of Trichophoreae genera are shown to be homoplasious. Several of these characters correlate best with climatic conditions, with the most reduced species occurring in open habitats at high latitudes and altitudes. Close relatives with highly compound inflorescences are found in temperate or subtropical forest understories. Cypringlea and Oreobolopsis are deeply nested within Trichophorum, and we merge all three genera into a more broadly circumscribed Trichophorum. We also show that Scirpus filipes is another previously unrecognized East Asian species of Trichophorum with highly compound inflorescences.


Subject(s)
Cyperaceae/classification , Bayes Theorem , Biodiversity , Cyperaceae/anatomy & histology , Cyperaceae/genetics , DNA, Plant/chemistry , DNA, Plant/metabolism , DNA, Ribosomal/chemistry , DNA, Ribosomal/metabolism , Likelihood Functions , Phylogeny , Phylogeography , Plastids/genetics , Sequence Analysis, DNA
2.
PeerJ ; 7: e7538, 2019.
Article in English | MEDLINE | ID: mdl-31579569

ABSTRACT

For those familiar with boreal bogs and wet tundra, species of Eriophorum ("the cotton grasses") will undoubtedly represent some of the most striking and memorable taxa they have encountered. This small genus of 20 Holarctic sedge species (Cyperaceae) is remarkable because its inflorescences produce large, brilliantly white to rusty-red cottony masses when its flowers develop a perianth of highly elongated bristles after anthesis. In this study, we document the rediscovery of Eriophorum scabriculme, a narrow Vietnamese endemic known from only two collections made approximately 7 km apart near Sa Pa in Lào Cai Province over 75 years ago. Using plastid DNA sequences (matK, ndhF), embryology, and morphology, we test whether E. scabriculme is aligned within the Scirpo-Caricoid Clade (genus Khaosokia and tribes Cariceae, Dulichieae, Scirpeae, and Sumatroscirpeae) or the Ficinia Clade (Cypereae), and we determine whether its unique character combinations (≥10 elongated bristles, reduced sheathing basal leaves, 1-4 spikelets) could be evidence for a new genus or simply mark it as an unusual species within currently recognised genera. In addition, we document the discovery of seven new populations, and we extend its range westward to Lai Châu Province and southward in Lào Cai Province by more than 47 km. Our results demonstrate that Eriophorum scabriculme is best treated in the genus Trichophorum, thus re-circumscribing both genera and their limits with Scirpus s.str. In addition, we emend the description of Trichophorum scabriculme (Beetle) J.R.Starr, Lév.-Bourret & B.A. Ford, provide the first pictures and accurate illustration of the species, and assess its conservation status in Vietnam (VU, Vulnerable). Our study corroborates the fact that in such a diverse and taxonomically difficult family like the sedges, conspicuous characters like highly elongated bristles may be useful for dividing diversity, but they are no guarantee that the groups they mark are natural.

3.
Syst Biol ; 67(1): 94-112, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28472459

ABSTRACT

Despite the promise that molecular data would provide a seemingly unlimited source of independent characters, many plant phylogenetic studies are still based on only two regions, the plastid genome and nuclear ribosomal DNA (nrDNA). Their popularity can be explained by high-copy numbers and universal polymerase chain reaction (PCR) primers that make their sequences easily amplified and converted into parallel datasets. Unfortunately, their utility is limited by linked loci and limited characters resulting in low confidence in the accuracy of phylogenetic estimates, especially when rapid radiations occur. In another contribution on anchored phylogenomics in angiosperms, we presented flowering plant-specific anchored enrichment probes for hundreds of conserved nuclear genes and demonstrated their use at the level of all angiosperms. In this contribution, we focus on a common problem in phylogenetic reconstructions below the family level: Weak or unresolved backbone due to rapid radiations ($\leqslant $10 million years) followed by long divergence, using the Cariceae-Dulichieae-Scirpeae (CDS, Cyperaceae) clade as a test case. By comparing our nuclear matrix of 461 genes to a typical Sanger-sequence dataset consisting of a few plastid genes (matK, ndhF) and an nrDNA marker (ETS), we demonstrate that our nuclear data is fully compatible with the Sanger dataset and resolves short backbone internodes with high support in both concatenated and coalescence-based analyses. In addition, we show that nuclear gene tree incongruence is inversely proportional to phylogenetic information content, indicating that incongruence is mostly due to gene tree estimation error. This suggests that large numbers of conserved nuclear loci could produce more accurate trees than sampling rapidly evolving regions prone to saturation and long-branch attraction. The robust phylogenetic estimates obtained here, and high congruence with previous morphological and molecular analyses, are strong evidence for a complete tribal revision of CDS clade. The anchored hybrid enrichment probes used in this study should be similarly effective in other flowering plant groups.


Subject(s)
Classification/methods , Genetic Speciation , Magnoliopsida/classification , Magnoliopsida/genetics , Phylogeny , Genome, Plant , Reproducibility of Results
4.
Mol Phylogenet Evol ; 119: 93-104, 2018 02.
Article in English | MEDLINE | ID: mdl-29113924

ABSTRACT

For over a century, the origins and mechanisms underlying the diversification of the enormous temperate genus Carex (>2100 species; Cariceae, Cyperaceae) have remained largely speculative. Characteristics such as its diverse ecology, varied biogeography, and intriguing cytology have made Carex a powerful model for studying plant evolution, but its uncertain sister-group relationships hinder its use in studies that depend on accurate ancestral state estimates and biogeographic inferences. To identify the sister to Carex, we estimated the phylogeny of all genera in the Cariceae-Dulichieae-Scirpeae clade (CDS) using three plastid and two nuclear ribosomal markers. Ancestral state reconstructions of key characters were made, and a time-calibrated tree estimated. Carex is strongly supported as sister to the rare East Asian Sumatroscirpus, sole genus of a new tribe, Sumatroscirpeae trib. nov. Believed to be unique to Carex, the perigynium (prophyllar bract enclosing a flower) is in fact a synapomorphy shared with this small tribe (∼4 species) that appeared 36 Mya. We thus suggest the initial key innovation in the remarkable diversification of Carex is not the perigynium, but could be the release of mechanical constraints on perigynia through spikelet truncation, resulting in novel adaptive morphologies. Monoecy, chromosomal change, and rapid inflorescence development enabling phenological isolation may also be involved. The tiny tribe Sumatroscirpeae will provide unprecedented insights into the inflorescence homology, evolution, diversification, and biogeographic history of its sister-group Carex, one of the world's most diverse plant lineages.


Subject(s)
Carex Plant/classification , Phylogeny , Carex Plant/anatomy & histology , Fossils , Likelihood Functions
5.
Mol Phylogenet Evol ; 88: 105-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25858558

ABSTRACT

Traditional Cariceae and Carex (1966 spp.) classifications recognised five genera (Carex, Cymophyllus, Kobresia, Schoenoxiphium, Uncinia) and four subgenera (Carex, Vignea, Vigneastra, Psyllophora). However, molecular studies have shown that only Carex, divided into five major lineages (the Core Carex, Schoenoxiphium, Core Unispicate, Vignea and Siderostictae Clades), is natural. These studies have also suggested that many early diverging tribal lineages are East Asian in origin, but the sampling of East Asian groups has been poor, and support for relationships within and among major Cariceae clades has been weak. To test deep patterns of relationship in Carex we assembled the longest sequence dataset yet (ITS, ETS 1f, matK, ndhF, rps16; ca. 4400bp) with taxonomic sampling focused on critical East and Southeast Asian Carex sections that have blurred subgeneric limits (Decorae, Graciles, Mundae) or have been at the heart of theories on tribal origins (Hemiscaposae, Indicae, Surculosae, Euprepes, Mapaniifoliae, Hypolytroides). Results indicate that subg. Vigneastra is highly polyphyletic (in five of seven major lineages recognised), and they provide the strongest support yet seen for all previously recognised major Cariceae clades in a single analysis (⩾93% BS). Moreover, results provide strong evidence for three previously unrecognised early diverging East and Southeast Asian lineages: a "Hypolytroides Clade" (sect. Hypolytroides) sister to the Siderostictae Clade, and for a "Dissitiflora Lineage" (sect. Mundae) and a morphologically diverse "Small Core Carex Clade" (sects. Graciles, Decorae, Mapaniifoliae, Euprepes, Indicae) as successive sisters to approximately 1400 species in the Core Carex Clade. Our findings also suggest that morphological diversification may have occurred in clades dominated by Asian species followed by canalization to a narrower range of morphologies in species-rich, cosmopolitan lineages.


Subject(s)
Carex Plant/classification , Phylogeny , Asia, Southeastern , Biological Evolution , Carex Plant/genetics , Asia, Eastern , Phylogeography
6.
Mol Ecol Resour ; 10(1): 69-91, 2010 Jan.
Article in English | MEDLINE | ID: mdl-21564992

ABSTRACT

Previous research on barcoding sedges (Carex) suggested that basic searches within a global barcoding database would probably not resolve more than 60% of the world's some 2000 species. In this study, we take an alternative approach and explore the performance of plant DNA barcoding in the Carex lineage from an explicitly regional perspective. We characterize the utility of a subset of the proposed protein-coding and noncoding plastid barcoding regions (matK, rpoB, rpoC1, rbcL, atpF-atpH, psbK-psbI) for distinguishing species of Carex and Kobresia in the Canadian Arctic Archipelago, a clearly defined eco-geographical region representing 1% of the Earth's landmass. Our results show that matK resolves the greatest number of species of any single-locus (95%), and when combined in a two-locus barcode, it provides 100% species resolution in all but one combination (matK + atpFH) during unweighted pair-group method with arithmetic mean averages (UPGMA) analyses. Noncoding regions were equally or more variable than matK, but as single markers they resolve substantially fewer taxa than matK alone. When difficulties with sequencing and alignment due to microstructural variation in noncoding regions are also considered, our results support other studies in suggesting that protein-coding regions are more practical as barcoding markers. Plastid DNA barcodes are an effective identification tool for species of Carex and Kobresia in the Canadian Arctic Archipelago, a region where the number of co-existing closely related species is limited. We suggest that if a regional approach to plant DNA barcoding was applied on a global scale, it could provide a solution to the generally poor species resolution seen in previous barcoding studies.

7.
Mol Ecol Resour ; 9 Suppl s1: 151-63, 2009 May.
Article in English | MEDLINE | ID: mdl-21564974

ABSTRACT

We investigate the species discriminatory power of a subset of the proposed plant barcoding loci (matK, rbcL, rpoC1, rpoB, trnH-psbA) in Carex, a cosmopolitan genus that represents one of the three largest plant genera on earth (c. 2000 species). To assess the ability of barcoding loci to resolve Carex species, we focused our sampling on three of the taxonomically best-known groups in the genus, sections Deweyanae (6/8 species sampled), Griseae (18/21 species sampled), and Phyllostachyae (10/10 species sampled). Each group represents one of three major phylogenetic lineages previously identified in Carex and its tribe Cariceae, thus permitting us to evaluate the potential of DNA barcodes to broadly identify species across the tribe and to differentiate closely related sister species. Unlike some previous studies that have suggested that plant barcoding could achieve species identification rates around 90%, our results suggest that no single locus or multilocus barcode examined will resolve much greater than 60% of Carex species. In fact, no multilocus combination can significantly increase the resolution and statistical support (i.e., ≥ 70% bootstrap) for species than matK alone, even combinations involving the second most variable region, trnH-psbA. Results suggest that a matK barcode could help with species discovery as 47% of Carex taxa recently named or resolved within cryptic complexes in the past 25 years also formed unique species clusters in upgma trees. Comparisons between the nrDNA internal transcribed spacer region (ITS) and matK in sect. Phyllostachyae suggest that matK not only discriminates more species (50-60% vs. 25%), but it provides more resolved phylogenies than ITS. Given the low levels of species resolution in rpoC1 and rpoB (0-13%), and difficulties with polymerase chain reaction amplification and DNA sequencing in rbcL and trnH-psbA (alignment included), we strongly advocate that matK should be part of a universal plant barcoding system. Although identification rates in this study are low, they can be significantly improved by a regional approach to barcoding.

8.
Am J Bot ; 93(3): 412-25, 2006 Mar.
Article in English | MEDLINE | ID: mdl-21646201

ABSTRACT

This study investigates the impact of hybridization and polyploidy in the evolution of eastern North American roses. We explore these processes in the Rosa carolina complex (section Cinnamomeae), which consists of five diploid and three tetraploid species. To clarify the status and origins of polyploids, a haplotype network (statistical parsimony) of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) nuclear gene was estimated for polyploids of the complex and for diploids of section Cinnamomeae in North America. A genealogical approach helped to decipher the evolutionary history of polyploids from noise created by hybridization, incomplete lineage sorting, and allelic segregation. At the diploid level, species west of the Rocky Mountains are distinct from eastern species. In the east, two groups of diploids were found: one consists of R. blanda and R. woodsii and the other of R. foliolosa, R. nitida, and R. palustris. Only eastern diploids are involved in the origins of the polyploids. Rosa arkansana is derived from the blanda-woodsii group, R. virginiana originated from the foliolosa-nitida-palustris group, and R. carolina is derived from a hybrid between the two diploid groups. The distinct origins of these polyploid taxa support the hypothesis that the three polyploids are separate species.

SELECTION OF CITATIONS
SEARCH DETAIL
...