Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 10444, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26786708

ABSTRACT

To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water-air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.

2.
Nano Lett ; 15(11): 7574-80, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26492362

ABSTRACT

The performances of heterojunction-based electronic devices are extremely sensitive to the interfacial electronic band structure. Here we report a largely enhanced performance of photoelectrochemical (PEC) photoanodes by ferroelectric polarization-endowed band engineering on the basis of TiO2/BaTiO3 core/shell nanowires (NWs). Through a one-step hydrothermal process, a uniform, epitaxial, and spontaneously poled barium titanate (BTO) layer was created on single crystalline TiO2 NWs. Compared to pristine TiO2 NWs, the 5 nm BTO-coated TiO2 NWs achieved 67% photocurrent density enhancement. By numerically calculating the potential distribution across the TiO2/BTO/electrolyte heterojunction and systematically investigating the light absorption, charge injection and separation properties of TiO2 and TiO2/BTO NWs, the PEC performance gain was proved to be a result of the increased charge separation efficiency induced by the ferroelectric polarization of the BTO shell. The ferroelectric polarization could be switched by external electric field poling and yielded PEC performance gain or loss based on the direction of the polarization. This study evidence that the piezotronic effect (ferroelectric or piezoelectric potential-induced band structure engineering) holds great promises in improving the performance of PEC photoelectrodes in addition to chemistry and structure optimization.

3.
J Phys Chem Lett ; 6(17): 3410-6, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26279397

ABSTRACT

Controlling the interface electronic band structure in heterostructures is essential for developing highly efficient photoelectrochemical (PEC) photoanodes. Here, we presented an enhanced oxygen evolution reaction (OER) by introducing the piezotronics concept, i.e., piezoelectric polarization (Ppz)-induced band engineering. In a Ni(OH)2-decorated ZnO photoanode system, appreciably improved photocurrent density of sulfite (SO3(2-)) and hydroxyl (OH(-)) oxidation reactions were obtained by physically deflecting the photoanode. Both theoretical and experimental results suggested that the performance enhancement was a result of the piezoelectric Ppz-endowed enlargement of the built-in electric field at the ZnO/Ni(OH)2 interface, which could drive an additional amount of photoexcited charges from ZnO toward the interface for OER. This strategy demonstrates a new route for improving the performance of inexpensive catalysts-based solar-to-fuel production.

4.
Sci Rep ; 3: 2160, 2013.
Article in English | MEDLINE | ID: mdl-23831736

ABSTRACT

Recently, the strain state of a piezoelectric electrode has been found to impact the electrochemical activity taking place between the piezoelectric material and its solution environment. This effect, dubbed piezocatalysis, is prominent in piezoelectric materials because the strain state and electronic state of these materials are strongly coupled. Herein we develop a general theoretical analysis of the piezocatalysis process utilizing well-established piezoelectric, semiconductor, molecular orbital and electrochemistry frameworks. The analysis shows good agreement with experimental results, reproducing the time-dependent voltage drop and H2 production behaviors of an oscillating piezoelectric Pb(Mg1/3Nb2/3)O3-32PbTiO3 (PMN-PT) cantilever in deionized water environment. This study provides general guidance for future experiments utilizing different piezoelectric materials, such as ZnO, BaTiO3, PbTiO3, and PMN-PT. Our analysis indicates a high piezoelectric coupling coefficient and a low electrical conductivity are desired for enabling high electrochemical activity; whereas electrical permittivity must be optimized to balance piezoelectric and capacitive effects.

5.
Adv Mater ; 24(34): 4683-91, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22549965

ABSTRACT

Engineering the electronic band structure using the piezopotential is an important aspect of piezotronics, which describes the coupling between the piezoelectric property and semiconducting behavior and functionalities. The time-independent band structure change under short-circuit condition is believed to be due to the remnant piezopotential present at the interface, a result of the finite charge-screening depth at the interface. A series of materials, including metals, semiconductors and electrolytes, are selected to investigate the interfacial band structure engineered by remnant piezopotential when they are in contact with a strained piezoelectric semiconductor. The remnant piezopotential at the interface can switch the junction between Ohmic and Schottky characters, enhance charge combination/separation, regulate barrier height, and modulate reaction kinetics. The difference between the regular time-dependent, pulse-type piezopotential and constant remnant piezopotential is also discussed in detail using a ZnO-based photoelectrochemical anode as an example. The piezotronic effect offers a new pathway for engineering the interface band structure without altering the interface structure or chemical composition, which is promising for improving the performance of many electronics, optoelectronics, and photovoltaic devices.


Subject(s)
Electric Conductivity , Engineering/methods , Semiconductors
7.
Nano Lett ; 11(12): 5587-93, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22088237

ABSTRACT

Through a process of photoelectrochemical (PEC) water splitting, we demonstrated an effective strategy for engineering the barrier height of a heterogeneous semiconductor interface by piezoelectric polarization, known as the piezotronic effect. A consistent enhancement or reduction of photocurrent was observed when tensile or compressive strains were applied to the ZnO anode, respectively. The photocurrent variation is attributed to a changed barrier height at the ZnO/ITO interface, which is a result of the remnant piezoelectric potential across the interface due to a nonideal free charge distribution in the ITO electrode. In our system, ∼1.5 mV barrier height change per 0.1% applied strain was identified, and 0.21% tensile strain yielded a ∼10% improvement of the maximum PEC efficiency. The remnant piezopotential is dictated by the screening length of the materials in contact with piezoelectric component. The difference between this time-independent remnant piezopotential effect and time-dependent piezoelectric effect is also studied in details.

8.
Nano Lett ; 11(2): 624-31, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21261290

ABSTRACT

Three-dimensional (3D) nanowire (NW) networks are promising architectures for effectively translating the extraordinary properties of one-dimensional objects into a 3D space. However, to uniformly grow NWs in a 3D confined space is a serious challenge due to the coupling between crystal growth and precursor concentration that is often dictated by the mass flow characteristic of vapor or liquid phase reactants within the high-aspect ratio submicrometer channels in current strategies. We report a pulsed chemical vapor deposition (CVD) process that successfully addressed this issue and grew TiO(2) nanorods uniformly covering the entire inner surface of highly confined nanochannels. We propose a mechanism for the anisotropic growth of anatase TiO(2) based on the surface-reaction-limited CVD process. This strategy would lead to the realization of NW-based 3D nanoarchitectures from various functional materials for the applications of sensors, solar cells, catalysts, energy storage systems, and so forth.


Subject(s)
Crystallization/methods , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Titanium/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...