Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38791793

ABSTRACT

Recreational waterbodies with high levels of faecal indicator bacteria (FIB) pose health risks and are an ongoing challenge for urban-lake managers. Lake Burley Griffin (LBG) in the Australian Capital city of Canberra is a popular site for water-based recreation, but analyses of seasonal and long-term patterns in enterococci that exceed alert levels (>200 CFU per 100 mL, leading to site closures) are lacking. This study analysed enterococci concentrations from seven recreational sites from 2001-2021 to examine spatial and temporal patterns in exceedances during the swimming season (October-April), when exposure is highest. The enterococci concentrations varied significantly across sites and in the summer months. The frequency of the exceedances was higher in the 2009-2015 period than in the 2001-2005 and 2015-2021 periods. The odds of alert-level concentrations were greater in November, December, and February compared to October. The odds of exceedance were higher at the Weston Park East site (swimming beach) and lower at the Ferry Terminal and Weston Park West site compared to the East Basin site. This preliminary examination highlights the need for site-specific assessments of environmental and management-related factors that may impact the public health risks of using the lake, such as inflows, turbidity, and climatic conditions. The insights from this study confirm the need for targeted monitoring efforts during high-risk months and at specific sites. The study also advocates for implementing measures to minimise faecal pollution at its sources.


Subject(s)
Enterococcus , Environmental Monitoring , Lakes , Recreation , Water Quality , Lakes/microbiology , Enterococcus/isolation & purification , Water Microbiology , Seasons , Spatio-Temporal Analysis
2.
Am J Primatol ; 84(8): e23397, 2022 08.
Article in English | MEDLINE | ID: mdl-35700311

ABSTRACT

The role of plant secondary metabolites (PSMs) in shaping the feeding decisions, habitat suitability, and reproductive success of herbivorous mammals has been a major theme in ecology for decades. Although primatologists were among the first to test these ideas, studies of PSMs in the feeding ecology of non-human primates have lagged in recent years, leading to a recent call for primatologists to reconnect with phytochemists to advance our understanding of the primate nutrition. To further this case, we present a formal meta-analysis of diet choice in response to PSMs based on field studies on wild primates. Our analysis of 155 measurements of primate feeding response to PSMs is drawn from 53 studies across 43 primate species which focussed primarily on the effect of three classes of PSMs tannins, phenolics, and alkaloids. We found a small but significant effect of PSMs on the diet choice of wild primates, which was largely driven by the finding that colobine primates showed a moderate aversion to condensed tannins. Conversely, there was no evidence that PSMs had a significant deterrent effect on food choices of non-colobine primates when all were combined into a single group. Furthermore, within the colobine primates, no other PSMs influenced feeding choices and we found no evidence that foregut anatomy significantly affected food choice with respect to PSMs. We suggest that methodological improvements related to experimental approaches and the adoption of new techniques including metabolomics are needed to advance our understanding of primate diet choice.


Subject(s)
Feeding Behavior , Food Preferences , Animals , Diet/veterinary , Feeding Behavior/physiology , Mammals , Plants/metabolism , Primates
3.
J Water Health ; 20(5): 781-793, 2022 May.
Article in English | MEDLINE | ID: mdl-35635772

ABSTRACT

Inland recreational swimming sites provide significant social value globally. This study focused on public recreational swimming sites across the Murrumbidgee River and its tributaries in the Australian Capital Territory (ACT) throughout the swimming season (September-April) from 2009 to 2020 to determine whether high intestinal enterococci concentrations could be predicted with flow exceedance and routinely monitored physical and chemical parameters of water quality. Enterococci concentrations were positively correlated with the turbidity associated with high-flow conditions. The predictive accuracy of high enterococci levels during high-flow conditions was good (mean percentage correctly classified, 60%). The prediction of high enterococci levels at low flows was significantly less reliable (mean percentage correctly classified, 12-15%). As the ACT is expected to experience decreases in rainfall overall but increases in extreme rainfall events due to climate change, understanding the drivers of elevated intestinal enterococci under extreme flow conditions remains important from a public health perspective.


Subject(s)
Swimming , Water Microbiology , Australia , Enterococcus , Rivers
4.
J Fish Biol ; 95(3): 974-978, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31278747

ABSTRACT

Juvenile silver grunter Mesopristes argenteus were observed, photographed and filmed manoeuvring objects with their snout and nape to expose benthic prey in two short steep coastal streams, including in the micro-estuary of one of these streams within the Australian Wet Tropics. Objects that were moved included leaves, sticks, bark, wood, seed pods, rainforest fruit, coral fragments and pebbles. Follower fish were sometimes associated with the foraging behaviour.


Subject(s)
Feeding Behavior/physiology , Fishes/physiology , Animals , Australia , Estuaries , Rivers
5.
Am J Primatol ; 79(4): 1-13, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27094926

ABSTRACT

Protein limitation has been considered a key factor in hypotheses on the evolution of life history and animal communities, suggesting that animals should prioritize protein in their food choice. This contrasts with the limited support that food selection studies have provided for such a priority in nonhuman primates, particularly for folivores. Here, we suggest that this discrepancy can be resolved if folivores only need to select for high protein leaves when average protein concentration in the habitat is low. To test the prediction, we applied meta-analyses to analyze published and unpublished results of food selection for protein and fiber concentrations from 24 studies (some with multiple species) of folivorous primates. To counter potential methodological flaws, we differentiated between methods analyzing total nitrogen and soluble protein concentrations. We used a meta-analysis to test for the effect of protein on food selection by primates and found a significant effect of soluble protein concentrations, but a non-significant effect for total nitrogen. Furthermore, selection for soluble protein was reinforced in forests where protein was less available. Selection for low fiber content was significant but unrelated to the fiber concentrations in representative leaf samples of a given forest. There was no relationship (either negative or positive) between the concentration of protein and fiber in the food or in representative samples of leaves. Overall our study suggests that protein selection is influenced by the protein availability in the environment, explaining the sometimes contradictory results in previous studies on protein selection. Am. J. Primatol. 79:e22550, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Feeding Behavior , Food Preferences , Plant Leaves , Primates , Animals , Dietary Fiber
6.
PLoS One ; 11(5): e0155216, 2016.
Article in English | MEDLINE | ID: mdl-27171381

ABSTRACT

Introduced herbivores frequently inflict significant, yet patchy damage on native ecosystems through selective browsing. However, there are few instances where the underlying cause of this patchy damage has been revealed. We aimed to determine if the nutritional quality of foliage could predict the browsing preferences of an invasive mammalian herbivore, the common brushtail possum (Trichosurus vulpecula), in a temperate forest in New Zealand. We quantified the spatial and temporal variation in four key aspects of the foliar chemistry (total nitrogen, available nitrogen, in vitro dry matter digestibility and tannin effect) of 275 trees representing five native tree species. Simultaneously, we assessed the severity of browsing damage caused by possums on those trees in order to relate selective browsing to foliar nutritional quality. We found significant spatial and temporal variation in nutritional quality among individuals of each tree species examined, as well as among tree species. There was a positive relationship between the available nitrogen concentration of foliage (a measure of in vitro digestible protein) and the severity of damage caused by browsing by possums. This study highlights the importance of nutritional quality, specifically, the foliar available nitrogen concentration of individual trees, in predicting the impact of an invasive mammal. Revealing the underlying cause of patchy browsing by an invasive mammal provides new insights for conservation of native forests and targeted control of invasive herbivores in forest ecosystems.


Subject(s)
Herbivory/physiology , Introduced Species , Mammals/physiology , Nutritional Physiological Phenomena , Plant Leaves/physiology , Animals , Ecosystem , Models, Theoretical , New Zealand , Probability , Trichosurus/physiology
7.
Biol Rev Camb Philos Soc ; 91(1): 86-105, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25424431

ABSTRACT

Obtaining biological and spatial information of the early life history (ELH) phases of fishes has been problematic, such that larval and juvenile phases are often referred to as the 'black box' of fish population biology and ecology. However, a potent source of life-history data has been mined from the earstones (otoliths) of bony fishes. We systematically reviewed 476 empirical papers published between 2005 and 2012 (inclusive) that used otoliths to examine fish ELH phases, which has been an area of increasing attention over this period. We found that otolith-based research during this period could be split into two broad themes according to whether studies examined: (i) biological objectives related to intrinsic processes such as larval and juvenile age, growth and mortality, and/or (ii) spatial objectives, such as habitat use, dispersal and migration. Surprisingly, just 24 studies (5%) explored a combined biological-spatial objective by simultaneously exploiting biological and spatial information from otoliths, suggesting much more scope for such integrated research objectives to be answered via the use of multiple otolith-based techniques in a single study. Mapping otolith analytical techniques across these two approaches revealed that otolith structural analysis was mainly used to investigate biological processes, while otolith chemical analyses were most often applied to spatial questions. Heavy skew in research effort was apparent across biomes, with most (62%) publications specific to marine species, despite comparable levels of species richness and the importance of freshwater taxa (just 15% of papers). Indeed, around 1% (380 species) of a possible 31400+ extant species were examined in our surveyed papers, with a strong emphasis on temperate marine species of commercial value. Potential model species for otolith-based ELH ecology research are arising, with the eel genus Anguilla (24 studies) and the European anchovy Engraulis encrasicolis (14 studies) attracting more research effort than most other taxa. While there is a preponderance of common techniques (e.g. daily otolith increment counts, increment widths), novel techniques such as transgenerational marking and computed X-ray tomography, are increasingly being applied in published studies. The application of an integrative approach based on a combination of emerging techniques and traditional methods holds promise for major advances in our understanding of ELH fish ecology and to shine light into the 'black box' of fish ecology.


Subject(s)
Animal Migration , Ecosystem , Fishes/physiology , Otolithic Membrane/physiology , Animals , Biological Evolution , Fishes/growth & development , Otolithic Membrane/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...