Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Methods ; 514: 113437, 2023 03.
Article in English | MEDLINE | ID: mdl-36736950

ABSTRACT

In Covid-19 and autoimmune patients, there are several similarities revealed in the immune responses (Liu et al., 2021; Woodruff et al., 2020). Earlier, we firstly detected a truncated (48 kDa) form of the unconventional Myosin 1C (48/Myo1C) in a fraction of proteins soluble in 10% 2,2,2-trichloroacetic acid (TCA). These proteins were obtained from blood serum of patients with autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis (Kit et al., 2018). Here, we demonstrated that content of 48/Myo1C was also elevated in blood serum of the severe Covid-19 patients. Whereas in blood of 28 clinically healthy human individuals regularly tested for Covid-19 infection, the amount of this protein was undetectable or very low, in blood of 16 of 28 patients hospitalized with severe course of this disease, its amount was significantly increased. Dexamethasone, steroid hormone which is widely used for treatment of severe Covid-19 patients, induced time-dependent elevation of the 48/Myo1C in blood of such patients. The 48/Myo1C dose-dependently suppressed the viability of anti-CD3-activated lymphocytes of human peripheral blood. Recently, we used affinity chromatography on the magnetic poly(glycidyl-methacrylate) (mag-PGMA-NH2) microparticles functionalized with Myo1C and MALDI-TOF mass spectrometry with molecular modeling in silico in order to identify potential molecular partners of the 48/Myo1C. It was found that 48/Myo1C might bind to component 3 of the complement system and the anti-thrombin-III (Starykovych et al., 2021). Thus, the mechanisms of the pathogenic action of truncated form of Myo1C in severe COVID-19 patients may involve a suppression of the immune cells, as well as modulation of complement and coagulation cascades.


Subject(s)
Autoimmune Diseases , COVID-19 , Multiple Sclerosis , Humans , Myosin Type I/chemistry , Myosin Type I/metabolism , Serum/metabolism , COVID-19/diagnosis
2.
ACS Omega ; 7(46): 41956-41967, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36440124

ABSTRACT

Recently, we detected a previously unknown Ser-Pro-Cys (SPC) tripeptide in the blood serum of multiple sclerosis patients. Its role as a biomarker of the autoimmune disease was suggested, although its origin and real biological activity remained unclear. Here, we created a biocompatible PEGylated comb-like polymer that was used as a platform for covalent immobilization of the SPC, which provided a possibility to explore the biological activity of this tripeptide. This macromolecular conjugate was synthesized via a reaction of the terminal epoxide group of the biocompatible copolymer of dimethyl maleate (DMM) and polyethylene glycol methyl ether methacrylate (PEGMA) with the amino group of the SPC tripeptide. Unexpectedly, the resulting conjugate containing SPC demonstrated anticancer activity in vitro. It possessed pro-apoptotic action toward human tumor cells, while there was no cytotoxic effect of that conjugate toward normal lymphocytes of human peripheral blood. The detected biological effects of the created conjugate inspired us to carry out a thorough study of structural and colloidal-chemical characteristics of this surface-active copolymer containing side PEG chains and a terminal nontoxic synthetic fragment. The copolymer composition, in particular, the content of the peptide fragment, was determined via elemental analysis and NMR spectroscopy. At CMC, it formed polymeric micelle-like structures with a hydrodynamic diameter of 180 ± 60 nm. The conjugation of the peptide fragment to the initial comb-like copolymer caused a change of zeta-potential of the formed micelle-like structures from -0.15 to 0.32 mV. Additional structural modification of the created polymeric nanoplatform was performed via attachment of fluorescein isothiocianate (FITC) dye that permitted monitoring of the behavior of the bioactive SPC-functionalized conjugate in the treated tumor cells. Its penetration into those cells and localization in their cytoplasm were revealed. The principal novelty of this study consists in finding that covalent conjugation of two nontoxic compounds-SPC tripeptide and comb-like PEGylated polymer-led to an unexpected synergy which appeared in the distinct cytotoxic action of the macromolecular complex toward human tumor cells. A potential role of peculiarities of the colloidal-chemical properties of the novel conjugate in its cytotoxic effect are discussed. Thus, synthesized comb-like PEGylated polymers can provide a prospective nanoplatform for drug delivery in anticancer chemotherapy.

3.
Biomed Chromatogr ; 35(4): e5029, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33201534

ABSTRACT

We firstly identified 48 kDa molecular form of the unconventional myosin 1c (p48/Myo1C), and isolated it from blood serum of multiple sclerosis patients. The amount of p48/Myo1C in human blood serum correlated with some autoimmune, hemato-oncological and neurodegenerative diseases and thus may serve as a potential molecular biomarker. The biological functions of this protein in human blood remain unknown. Previously, we used the monodisperse magnetic poly (glycidyl methacrylate)(mag-PGMA-NH2 ) microspheres with immobilized 48/Myo1C and western-blot analysis, which allowed us to identify IgM and IgG immunoglobulins presenting an affinity to this protein. Here, we used mass spectrometry followed by the western blotting in order to identify other blood serum proteins with affinity to 48/Myo1C. The obtained data demonstrate that 48/Myo1C binds to component 3 of the complement and the antithrombin-III proteins. A combination of magnetic microparticle-based affinity chromatography with MALDI-TOF mass spectrometry and an in silico analysis provided an opportunity to identify the partners of interaction of 48/Myo1C with other proteins, in particular those participating in complement and coagulation cascades.


Subject(s)
Blood Proteins/analysis , Blood Proteins/metabolism , Chromatography, Affinity/methods , Myosin Type I/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Blood Proteins/chemistry , Blotting, Western , Humans , Magnets , Microspheres , Models, Molecular , Multiple Sclerosis/blood , Myosin Type I/chemistry , Prognosis , Protein Binding
4.
Biomed Res Int ; 2019: 4087160, 2019.
Article in English | MEDLINE | ID: mdl-31317028

ABSTRACT

Autophagy is a degradative process in which cellular organelles and proteins are recycled to restore homeostasis and cellular metabolism. Autophagy can be either a prosurvival or a prodeath process and remains one of the most fundamental processes for cell vitality. Thus autophagy modulation is an important approach for reinforcement anticancer therapeutics. Earlier we have demonstrated that recombinant analog of human milk protein lactaptin (RL2) induced apoptosis of various cultured cancer cells and activated lipidation of microtubule-associated protein 1 light chain 3 (LC3). In this study we investigated whether autophagy inhibitors-chloroquine (CQ), Ku55933 (Ku), and 3-methyladenine (3MA)-or inducer-rapamycin (Rap)-can enhance cytotoxic activity of lactaptin analog in cancer cells and its anticancer activity in the mice model. Western Blot analysis revealed that RL2 induced short-term autophagy in MDA-MB-231 and MCF-7 cells at early stages of incubation and that these data were confirmed by the transmission electron microscopy of autophagosome/autophagolysosome formation. RL2 stimulates reactive oxygen species (ROS) production, autophagosomes accumulation, upregulation of ATG5 with processing of LC3I to LC3II, and downregulation of p62/sequestosome 1 (p62). We have shown that autophagy modulators, CQ, Ku, and Rap, synergistically increased cytotoxicity of RL2, and RL2 with CQ induced autophagic cell death. In addition, CQ, Ku, and Rap in combination with RL2 decreased activity of lysosomal protease Cathepsin D. More importantly, combining RL2 with CQ, we improved antitumor effect in mice. Detected synergistic cytotoxic effects of both types of autophagy regulators, inhibitors, and inducers with RL2 against cancer cells allow us to believe that these combinations can be a basis for the new anticancer approach. Finally, we suppose that CQ and Rap promoting of short-term RL2-induced autophagy interlinks with final autophagic cell death.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Caseins/pharmacology , Neoplasms/drug therapy , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Apoptosis/drug effects , Autophagy/genetics , Caseins/genetics , Cathepsin D/genetics , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chloroquine/pharmacology , Humans , Lysosomes/drug effects , Lysosomes/genetics , MCF-7 Cells , Mice , Microtubule-Associated Proteins/genetics , Morpholines/pharmacology , Neoplasms/genetics , Pyrones/pharmacology , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/genetics
5.
Biomed Chromatogr ; 33(11): e4647, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31299101

ABSTRACT

The cytopoxic effect of RL2 lactaptin (the recombinant analog of proteolytic fragment of human kappa-casein) toward tumor cells in vitro and in vivo presents it as a novel promising antitumor drug. The binding of any drug with serum proteins can affect their activity, distribution, rate of excretion and toxicity in the human body. Here, we studied the ability of RL2 to bind to various blood serum proteins. Using magnetic microparticles bearing by RL2 as an affinity matrix, in combination with mass spectrometry and western blot analysis, we found a number of blood serum proteins possessing affinity for RL2. Among them IgA, IgM and IgG subclasses of immunoglobulins, apolipoprotein A1 and various cortactin isoforms were identified. This data suggests that in the bloodstream RL2 lactaptin takes part in complicate protein-protein interactions, which can affect its activity.


Subject(s)
Antineoplastic Agents/metabolism , Blood Proteins/isolation & purification , Blood Proteins/metabolism , Caseins/metabolism , Magnets/chemistry , Blood Proteins/analysis , Chromatography, Affinity/methods , Humans , Microspheres , Polymethacrylic Acids/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
6.
Croat Med J ; 58(2): 150-159, 2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28409498

ABSTRACT

AIM: To compare various pro-apoptotic effects of synthetic 4-thiazolidinone derivative (Les-3288), doxorubicin (Dox) and temozolomide (TMZ) in the treatment of human glioma U251 cells to improve treatment outcomes of glioblastoma and avoid anticancer drug resistance. METHODS: The cytotoxic effects of drugs used in human glioma U251 cells were measured by cell viability and proliferation assay (MTT), Trypan blue exclusion test, and Western-blot analysis of the apoptosis-related proteins. In addition, flow cytometry study of reactive oxygen species (ROS) level in glioma cells was carried out. Cytomorphological changes in treated cells were monitored by fluorescent microscopy after cell staining with Hoechst 33342 and ethydium bromide. RESULTS: Half-maximal inhibitory concentration (IC50) of Les-3288, Dox, and TMZ was calculated for human glioblastoma U251 cells. The rating of the values of this indicator of cellular vitality was assessed. The results of MTT assay proved the superiority of Les-3288 vs Les-3288>Dox>TMZ, which is in agreement with the results of Trypan blue testing showing Les-3288≈Dox>TMZ. In general, such ranking corresponded to a scale of pro-apoptotic impairments in the morphology of glioma U251 cells and the results of Western-blot analysis of cleaved Caspase 3. Contrary to Dox, Les-3288 and TMZ did not affect significantly ROS levels in the treated cells. CONCLUSION: The effect of the synthetic 4-thiazolidinone derivative Les-3288 is realized via apoptosis mechanisms and does not involve ROS. In comparison with Dox and TMZ, it is more effective in destroying human glioblastoma U251 cells. Les-3288 compound has a potential as an anticancer drug for glioblastoma. Nevertheless, further preclinical studies of the blood-brain barrier are needed.


Subject(s)
Antineoplastic Agents/pharmacology , Dacarbazine/analogs & derivatives , Doxorubicin/pharmacology , Glioma/drug therapy , Thiazolidines/pharmacology , Apoptosis/drug effects , Blood-Brain Barrier/metabolism , Brain Neoplasms , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dacarbazine/pharmacology , Dose-Response Relationship, Drug , Humans , Reactive Oxygen Species , Temozolomide
7.
Croat Med J ; 55(3): 259-64, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24891284

ABSTRACT

AIM: To develop and test a protocol for isolation of potential auto-antigens from chorionic tissue that may be linked to recurrent miscarriage (RM). METHODS: The strategy included: 1) isolation of IgGs tightly bound to chorionic tissue of RM patients by protein G chromatography; 2) construction of affinity columns using the chorionic antibodies for isolation of auto-antigens; 3) enrichment of auto-antigens from detergent extracted solution of chorionic proteins by affinity chromatography; 4) separation by dodecyl sulfate-electrophoresis followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry identification. RESULTS: Five potential auto-antigens were detected: neutral alpha-glucosidase AB, endoplasmin, transitional endoplasmic reticulum ATPase, putative endoplasmin-like protein, and cytoplasmic actin 2. CONCLUSIONS: We developed a strategy for identification of auto-antigens in the chorionic tissue of women with RM, which could be of diagnostic and prognostic value.


Subject(s)
Abortion, Habitual/metabolism , Autoantigens/metabolism , Chorion/metabolism , Egg Proteins/metabolism , Actins/metabolism , Adenosine Triphosphatases/metabolism , Adult , Autoantibodies/analysis , Blotting, Western , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Endoplasmic Reticulum/enzymology , Female , Humans , Membrane Glycoproteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Young Adult , alpha-Glucosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...