Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Electromagn Biol Med ; 43(3): 187-203, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38990565

ABSTRACT

To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.


In our research, we've introduced an enhanced electrical model for living cells. This model simplifies cell behavior using only basic electrical components like resistors and capacitors. It's designed to mimic the real electrical properties of cells, particularly the cell membrane, which can change in response to electricity at different frequencies, ranging from 1 kHz to 100 MHz. This frequency range is essential for studying processes like electroporation, a technique used in various medical applications.Our model is represented in a two-dimensional structure, making it a handy tool for identifying transmembrane potential distributions, a critical factor in electroporation procedures. This means we can better understand how cells react to electrical impulses, which is crucial for improving electroporation techniques.Additionally, we've extended our model to include muscle cells by incorporating the Hodgkin-Huxley model, a well-established model for understanding electrical behavior in muscle cells. This allows us to study how muscles contract when exposed to different electrical pulses, a common side effect of electroporation procedures. By examining various pulse characteristics, we can determine which ones are best for minimizing muscle contractions during electroporation.In summary, our research has led to the development of a versatile electrical model for living cells. It not only helps us understand how cells respond to electricity in the context of electroporation but also provides insights into muscle contractions and how to optimize electrical pulses for medical treatments.


Subject(s)
Action Potentials , Models, Biological , Electroporation , Cell Survival/radiation effects , Electricity , Humans
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108409

ABSTRACT

The effect of nanosecond electromagnetic pulses on human health, and especially on forming free radicals in human cells, is the subject of continuous research and ongoing discussion. This work presents a preliminary study on the effect of a single high-energy electromagnetic pulse on morphology, viability, and free radical generation in human mesenchymal stem cells (hMSC). The cells were exposed to a single electromagnetic pulse with an electric field magnitude of ~1 MV/m and a pulse duration of ~120 ns generated from a 600 kV Marx generator. The cell viability and morphology at 2 h and 24 h after exposure were examined using confocal fluorescent microscopy and scanning electron microscopy (SEM), respectively. The number of free radicals was investigated with electron paramagnetic resonance (EPR). The microscopic observations and EPR measurements showed that the exposure to the high-energy electromagnetic pulse influenced neither the number of free radicals generated nor the morphology of hMSC in vitro compared to control samples.


Subject(s)
Electromagnetic Phenomena , Mesenchymal Stem Cells , Humans , Free Radicals , Immunologic Factors
3.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681896

ABSTRACT

The purpose of this study was to verify whether the nanosecond pulsed electric field, not eliciting thermal effects, permanently changes the molecular processes and gene expression of Leydig TM3 cells. The cells were exposed to a moderate electric field (80 quasi-rectangular shape pulses, 60 ns pulse width, and an electric field of 14 kV/cm). The putative disturbances were recorded over 24 h. After exposure to the nanosecond pulsed electric field, a 19% increase in cell diameter, a loss of microvilli, and a 70% reduction in cell adhesion were observed. Some cells showed the nonapoptotic externalization of phosphatidylserine through the pores in the plasma membrane. The cell proportion in the subG1 phase increased by 8% at the expense of the S and G2/M phases, and the DNA was fragmented in a small proportion of the cells. The membrane mitochondrial potential and superoxide content decreased by 37% and 23%, respectively. Microarray's transcriptome analysis demonstrated a negative transient effect on the expression of genes involved in oxidative phosphorylation, DNA repair, cell proliferation, and the overexpression of plasma membrane proteins. We conclude that nanosecond pulsed electric field affected the physiology and gene expression of TM3 cells transiently, with a noticeable heterogeneity of cellular responses.


Subject(s)
Biomarkers/metabolism , Electricity , Gene Expression Regulation/radiation effects , Leydig Cells/metabolism , Nanotechnology/methods , Animals , Apoptosis , Cell Membrane/metabolism , Cell Membrane/radiation effects , Cell Movement , Cell Proliferation , Cells, Cultured , Electroporation , Leydig Cells/radiation effects , Male , Membrane Potential, Mitochondrial , Mice
4.
PLoS One ; 12(4): e0175927, 2017.
Article in English | MEDLINE | ID: mdl-28419148

ABSTRACT

In the present study, we investigated the optimum length of prolonged dormancy (developmental arrest extending over favourable periods) of organisms under uncertain environmental conditions. We used an artificial life model to simulate the evolution of suspended development in the ontogenesis of organisms inhabiting unpredictably changing habitats. A virtual population of semelparous parthenogenetic individuals that varied in a duration of developmental arrest competed for limited resources. At a constant level of available resources, uninterrupted development was the superior life strategy. Once population fluctuations appeared (generated by the stochastic variability of available resources), temporal developmental arrest became more advantageous than continuous development. We did not observe the selection of the optimum length of dormancy, but rather the evolution of a diversified period of developmental arrest. The fittest organisms employed bet-hedging strategy and produced diversified dormant forms postponing development for a different number of generations (from 0 to several generations, in decreasing or equal proportions). The maximum length of suspended development increased asymptotically with increasing environmental variability and was inversely related to the mortality of dormant forms. The prolonged dormancy may appear beneficial not only in erratic habitats but also in seasonal ones that are exposed to long-term variability of environmental conditions during the growing seasons. In light of our simulations the phenomenon of very long diapause (VLD), lasting tens to thousands of generations, which is occasionally observed in ontogenesis of some living creatures, may not be explained by the benefits of bet-hedging revival strategies. We propose an alternative reasoning for the expression of VLD.


Subject(s)
Adaptation, Physiological , Ecosystem , Animals , Biological Evolution , Computer Simulation , Growth and Development , Models, Biological , Parthenogenesis
5.
Psychiatr Pol ; 44(6): 835-51, 2010.
Article in Polish | MEDLINE | ID: mdl-21449167

ABSTRACT

With help of informatics technology it is possible to simulate various physiological processes in virtual models of biological structures. In a created realistic model of the human head we made some comparative investigations over physical phenomena accompanying the electroconvulsive treatment ECT and transcranial magnetic stimulation TMS--two methods with confirmed (ECT) or presumable (TMS) antidepressant efficacy. The present investigations are a continuation of the earlier conducted study in the simple spherical model of the head. Investigations confirmed, that magnetic stimulation TMS generates a considerably weaker current flow in the brain than it is present in electroconvulsive technique. Applying of such weak stimulation in modus,,at haphazard", i.e. on the brain area which does not need to be metabolically disturbed in this patient--cannot cause an antidepressant effect at all. The results of the investigations explain not only the safety of the magnetic method, but the weak effectiveness of this method. The authors propose some methods for improvement of TMS efficacy.


Subject(s)
Computer Simulation , Depression/therapy , Electric Stimulation Therapy/methods , Electroconvulsive Therapy/methods , Therapy, Computer-Assisted/methods , Humans , Imaging, Three-Dimensional/methods , Magnetics , Models, Biological , Models, Neurological
SELECTION OF CITATIONS
SEARCH DETAIL
...