Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 14163, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898073

ABSTRACT

Brain-inspired resistive random-access memory (RRAM) technology is anticipated to outperform conventional flash memory technology due to its performance, high aerial density, low power consumption, and cost. For RRAM devices, metal oxides are exceedingly investigated as resistive switching (RS) materials. Among different oxides, tin oxide (SnOx) received minimal attention, although it possesses excellent electronic properties. Herein, we demonstrate compliance-free, analog resistive switching behavior with several stable states in Ti/Pt/SnOx/Pt RRAM devices. The compliance-free nature might be due to the high internal resistance of SnOx films. The resistance of the films was modulated by varying Ar/O2 ratio during the sputtering process. The I-V characteristics revealed a well-expressed high resistance state (HRS) and low resistance states (LRS) with bipolar memristive switching mechanism. By varying the pulse amplitude and width, different resistance states have been achieved, indicating the analog switching characteristics of the device. Furthermore, the devices show excellent retention for eleven states over 1000 s with an endurance of > 100 cycles.

2.
Sci Rep ; 12(1): 13912, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978029

ABSTRACT

Electronic systems are becoming more and more ubiquitous as our world digitises. Simultaneously, even basic components are experiencing a wave of improvements with new transistors, memristors, voltage/current references, data converters, etc, being designed every year by hundreds of R &D groups world-wide. To date, the workhorse for testing all these designs has been a suite of lab instruments including oscilloscopes and signal generators, to mention the most popular. However, as components become more complex and pin numbers soar, the need for more parallel and versatile testing tools also becomes more pressing. In this work, we describe and benchmark an FPGA system developed that addresses this need. This general purpose testing system features a 64-channel source-meter unit, and [Formula: see text] banks of 32 digital pins for digital I/O. We demonstrate that this bench-top system can obtain [Formula: see text] current noise floor, [Formula: see text] pulse delivery at [Formula: see text] and [Formula: see text] maximum current drive/channel. We then showcase the instrument's use in performing a selection of three characteristic measurement tasks: (a) current-voltage characterisation of a diode and a transistor, (b) fully parallel read-out of a memristor crossbar array and (c) an integral non-linearity test on a DAC. This work introduces a down-scaled electronics laboratory packaged in a single instrument which provides a shift towards more affordable, reliable, compact and multi-functional instrumentation for emerging electronic technologies.


Subject(s)
Electronics , Electrons
3.
Sci Adv ; 8(25): eabn7920, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35731877

ABSTRACT

Biological synapses store multiple memories on top of each other in a palimpsest fashion and at different time scales. Palimpsest consolidation is facilitated by the interaction of hidden biochemical processes governing synaptic efficacy during varying lifetimes. This arrangement allows idle memories to be temporarily overwritten without being forgotten, while previously unseen memories are used in the short term. While embedded artificial intelligence can greatly benefit from this functionality, a practical demonstration in hardware is missing. Here, we show how the intrinsic properties of metal-oxide volatile memristors emulate the processes supporting biological palimpsest consolidation. Our memristive synapses exhibit an expanded doubled capacity and protect a consolidated memory while up to hundreds of uncorrelated short-term memories temporarily overwrite it, without requiring specialized instructions. We further demonstrate this technology in the context of visual working memory. This showcases how emerging memory technologies can efficiently expand the capabilities of artificial intelligence hardware toward more generalized learning memories.

4.
Sci Rep ; 12(1): 10467, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729336

ABSTRACT

Memristors, when utilized as electronic components in circuits, can offer opportunities for the implementation of novel reconfigurable electronics. While they have been used in large arrays, studies in ensembles of devices are comparatively limited. Here we propose a vertically stacked memristor configuration with a shared middle electrode. We study the compound resistive states presented by the combined in-series devices and we alter them either by controlling each device separately, or by altering the full configuration, which depends on selective usage of the middle floating electrode. The shared middle electrode enables a rare look into the combined system, which is not normally available in vertically stacked devices. In the course of this study, it was found that separate switching of individual devices carries over its effects to the Complete device (albeit non-linearly), enabling increased resistive state range, which leads to a larger number of distinguishable states (above SNR variance limits) and hence enhanced device memory. Additionally, by applying a switching stimulus to the external electrodes it is possible to switch both devices simultaneously, making the entire configuration a voltage divider with individual memristive components. Through usage of this type of configuration and by taking advantage of the voltage division, it is possible to surge-protect fragile devices, while it was also found that simultaneous reset of stacked devices is possible, significantly reducing the required reset time in larger arrays.

5.
Sci Rep ; 11(1): 20599, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34663849

ABSTRACT

Over the past decade, memristors have been extensively studied for a number of applications, almost exclusively with DC characterization techniques. Studies of memristors in AC circuits are sparse, with only a few examples found in the literature, and characterization methods with an AC input are also sparingly used. However, publications concerning the usage of memristors in this working regime are currently on the rise. Here we propose a "technology agnostic" methodology for memristor testing in certain frequency bands. A measurement process is initially proposed, with specific instructions on sample preparation, followed by an equipment calibration and measurement protocol. This article is structured in a way which aims to facilitate the usage of any available measurement equipment and it can be applied on any type of memristive technology. The second half of this work is centered around the representation of data received from following this process. Bode plot and Nyquist plot representations are considered and the information received from them is evaluated. Finally, examples of expected behaviors are given, characterizing simulated scenarios which represent different internal device models and different switching behaviors, such as capacitive or inductive switching. This study aims at providing a cohesive way for memristor characterization, to be used as a good starting point for frequency applications, and for understanding physical processes inside the devices, by streamlining the measuring process and providing a frame in which data representation and comparison will be facilitated.

7.
Sci Rep ; 10(1): 21130, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33273571

ABSTRACT

There is an increasing interest for alternative ways to program memristive devices to arbitrary resistive levels. Among them, light-controlled programming approach, where optical input is used to improve or to promote the resistive switching, has drawn particular attention. Here, we present a straight-forward method to induce resistive switching to a memristive device, introducing a new version of a metal-oxide memristive architecture coupled with a UV-sensitive hybrid top electrode obtained through direct surface treatment with PEDOT:PSS of an established resistive random access memory platform. UV-illumination ultimately results to resistive switching, without involving any additional stimulation, and a relation between the switching magnitude and the applied wavelength is depicted. Overall, the system and method presented showcase a promising proof-of-concept for granting an exclusively light-triggered resistive switching to memristive devices irrespectively of the structure and materials comprising their main core, and, in perspective can be considered for functional integrations optical-induced sensing.

8.
Sci Rep ; 10(1): 15281, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943646

ABSTRACT

Medical interventions increasingly rely on biosensors that can provide reliable quantitative information. A longstanding bottleneck in realizing this, is various non-idealities that generate offsets and variable responses across sensors. Current mitigation strategies involve the calibration of sensors, performed in software or via auxiliary compensation circuitry thus constraining real-time operation and integration efforts. Here, we show that bio-functionalized metal-oxide memristors can be utilized for directly transducing biomarker concentration levels to discrete memory states. The introduced chemical state-variable is found to be dependent on the devices' initial resistance, with its response to chemical stimuli being more pronounced for higher resistive states. We leverage this attribute along with memristors' inherent state programmability for calibrating a biosensing array to render a homogeneous response across all cells. Finally, we demonstrate the application of this technology in detecting Prostate Specific Antigen in clinically relevant levels (ng/ml), paving the way towards applications in large multi-panel assays.

9.
Sci Rep ; 9(1): 19412, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31857604

ABSTRACT

The emergence of memristor technologies brings new prospects for modern electronics via enabling novel in-memory computing solutions and energy-efficient and scalable reconfigurable hardware implementations. Several competing memristor technologies have been presented with each bearing distinct performance metrics across multi-bit memory capacity, low-power operation, endurance, retention and stability. Application needs however are constantly driving the push towards higher performance, which necessitates the introduction of a standard benchmarking procedure for fair evaluation across distinct key metrics. Here we present an electrical characterisation methodology that amalgamates several testing protocols in an appropriate sequence adapted for memristors benchmarking needs, in a technology-agnostic manner. Our approach is designed to extract information on all aspects of device behaviour, ranging from deciphering underlying physical mechanisms to assessing different aspects of electrical performance and even generating data-driven device-specific models. Importantly, it relies solely on standard electrical characterisation instrumentation that is accessible in most electronics laboratories and can thus serve as an independent tool for understanding and designing new memristive device technologies.

10.
Beilstein J Nanotechnol ; 9: 1868-1880, 2018.
Article in English | MEDLINE | ID: mdl-30013881

ABSTRACT

In this work we study the fabrication and characterization of hafnium nanoparticles and hafnium nanoparticle thin films. Hafnium nanoparticles were grown in vacuum by magnetron-sputtering inert-gas condensation. The as deposited nanoparticles have a hexagonal close-packed crystal structure, they possess truncated hexagonal biprism shape and are prone to surface oxidation when exposed to ambient air forming core-shell Hf/HfO2 structures. Hafnium nanoparticle thin films were formed through energetic nanoparticle deposition. This technique allows for the control of the energy of charged nanoparticles during vacuum deposition. The structural and nanomechanical properties of the nanoparticle thin films were investigated as a function of the kinetic energy of the nanoparticles. The results reveal that by proper adjustment of the nanoparticle energy, hexagonal close-packed porous nanoparticle thin films with good mechanical properties can be formed, without any additional treatment. It is shown that these films can be patterned on the substrate in sub-micrometer dimensions using conventional lithography while their porosity can be well controlled. The fabrication and experimental characterization of hafnium nanoparticles is reported for the first time in the literature.

11.
Sci Rep ; 7(1): 17532, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235524

ABSTRACT

Emerging nanoionic memristive devices are considered as the memory technology of the future and have been winning a great deal of attention due to their ability to perform fast and at the expense of low-power and -space requirements. Their full potential is envisioned that can be fulfilled through their capacity to store multiple memory states per cell, which however has been constrained so far by issues affecting the long-term stability of independent states. Here, we introduce and evaluate a multitude of metal-oxide bi-layers and demonstrate the benefits from increased memory stability via multibit memory operation. We propose a programming methodology that allows for operating metal-oxide memristive devices as multibit memory elements with highly packed yet clearly discernible memory states. These states were found to correlate with the transport properties of the introduced barrier layers. We are demonstrating memory cells with up to 6.5 bits of information storage as well as excellent retention and power consumption performance. This paves the way for neuromorphic and non-volatile memory applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...