Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37624011

ABSTRACT

The antioxidant defense system can be stimulated by growth regulators in plants when they are under stress, such as exposure to pathogens. There are a lot of natural growth regulators on the market, but no research has been carried out yet to determine how effective they are. This field and laboratory study examines the impact of two commonly used Russian growth regulators, Crezacin and Zircon, along with artificial infection with Fusarium culmorum on the antioxidant system of naked oat. The results show that, compared to the control, Crezacin-treated plants had higher contents of low molecular weight fructose and nonenzymatic antioxidants like proline, phenolic compounds, and flavonoids. Zircon-treated plants had a lower content of proline, carbohydrates, and lower total antioxidant activity than the control plants. The obtained data show that Crezacin treatment mainly affected nonenzymatic systems of the antioxidant defense. This treatment was more successful than the Zircon application, which did not show any appreciable effectiveness and was typically associated with an improvement in oat productivity. The treatment with growth regulators and a fungal suspension performed at the flowering phase provided the best effect on the biochemical parameters and productivity of naked oats. Moreover, oat treatment with the pathogen promoted the reproductive capabilities of the plants, while growth regulators helped in avoiding infectious stress.

2.
BioTech (Basel) ; 12(2)2023 May 05.
Article in English | MEDLINE | ID: mdl-37218749

ABSTRACT

Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.

3.
Microorganisms ; 10(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35889066

ABSTRACT

Zearalenone (ZEN) and deoxynivalenol (DON) are mycotoxins produced by various species of Fusarium fungi. They contaminate agricultural products and negatively influence human and animal health, thus representing a serious problem of the agricultural industry. Earlier we showed that compactin, a secondary metabolite of Penicillium citrinum, is able to completely suppress the aflatoxin B1 biosynthesis by Aspergillus flavus. Using the F. culmorum strain FC-19 able to produce DON and ZEN, we demonstrated that compactin also significantly suppressed both DON (99.3%) and ZEN (100%) biosynthesis. The possible mechanisms of this suppression were elucidated by qPCR-based analysis of expression levels of 48 biosynthetic and regulatory genes. Expression of eight of 13 TRI genes, including TRI4, TRI5, and TRI101, was completely suppressed. A significant down-regulation was revealed for the TRI10, TRI9, and TRI14 genes. TRI15 was the only up-regulated gene from the TRI cluster. In the case of the ZEN cluster, almost complete suppression was observed for PKS4, PKS13, and ZEB1 genes, and the balance between two ZEB2 isoforms was altered. Among regulatory genes, an increased expression of GPA1 and GPA2 genes encoding α- and ß-subunits of a G-protein was shown, whereas eight genes were down-regulated. The obtained results suggest that the main pathway for a compactin-related inhibition of the DON and ZEN biosynthesis affects the transcription of genes involved in the G-protein-cAMP-PKA signaling pathway. The revealed gene expression data may provide a better understanding of genetic mechanisms underlying mycotoxin production and its regulation.

4.
AIMS Microbiol ; 4(1): 192-208, 2018.
Article in English | MEDLINE | ID: mdl-31294210

ABSTRACT

Use of chemical pesticides poses a threat for environment and human health, so green technologies of crop protection are of high demand. Some microbial proteins able to activate plant defense mechanisms and prevent the development of resistance in plant pathogens, may be good alternative to chemicals, but practical use of such elicitors is limited due to need to protect them against adverse environment prior their delivery to target receptors of plant cells. In this study we examined a possibility to encapsulate heat resistant FKBP-type peptidyl prolyl cis-trans isomerase (PPIase) from Pseudomonas fluorescens, which possesses a significant eliciting activity in relation to a range of plant pathogens, in sodium alginate microparticles and evaluated the stability of resulted complex under long-term UV irradiation and in the presence of proteinase K, as well as its eliciting activity in three different "plant-pathogen" models comparing to that of free PPIase. The obtained PPIase-containing microparticles consisted of 70% of sodium alginate, 20% of bovine serum albumin, and 10% of PPIase. In contrast to free PPIase, which lost its eliciting properties after 8-h UV treatment, encapsulated PPIase kept its eliciting ability unchanged; after being exposed to proteinase K, its eliciting ability twice exceeded that of free PPIase. Using "tobacco-TMV", "tobacco-Alternaria longipes", and "wheat-Stagonospora nodorum" model systems, we showed that encapsulation process did not influence on the eliciting activity of PPIase. In the case of the "wheat-S. nodorum" model system, we also observed a significant eliciting activity of alginate-albumin complex and almost doubled activity of encapsulated PPIase as compared to the free PPIase. As far as we know, this is the first observation of a synergistic interaction between alginate and other compound possessing any bioactive properties. The results of the study show some prospects for a PPIase use in agriculture.

5.
AIMS Microbiol ; 4(4): 608-621, 2018.
Article in English | MEDLINE | ID: mdl-31294237

ABSTRACT

Nisin A belonging to the class I bacteriocins and produced by Lactococcus lactis subsp. lactis is widely used in many countries as highly efficient and safe preservative preventing growth of undesirable bacteria in food products. Though this compound is efficient at very low concentrations, reduction of its manufacturing cost is still relevant problem. An increased nisin A production requires improved resistance of its producer to nisin. According to some studies, mechanisms of microbial resistance to nisin A and bacitracin have a similar basis, and the same transporters are used to export these antibiotics from cells. To obtain strains with improved growth rate and nisin A productivity, selection of spontaneous bacitracin-resistant L. lactis mutants followed by examination of their stability as well as physiological and fermentation characteristics was carried out. Spontaneous mutants were obtained by culturing of L. lactis VKPM B-2092 strain on selective bacitracin-containing agar medium. The obtained bacitracin-resistant strain FL-75 was characterized by accelerated growth rate, doubled biomass accumulation, and improved nisin A resistance. The nisin A productivity of FL-75 exceeded that of the parental strain by 25% reaching 8902 U/mL after 14-h cultivation. In addition, FL-75 was characterized by the improved resistance to oxidative stress that has never been reported earlier for bacitracin-resistant microorganisms. Based on the performed characterization of FL-75, we can consider it as a new independent strain promising for the industrial production of food and feed biopreservatives. Comparison of published data and the obtained results allowed us to suppose that the bacitracin resistance mutation in FL-75 is determined rather by an increased expression of a gene homologous to the bcrC gene of Bacillus sp. than by the activation of multidrug resistance mechanisms. The revealed resistance of FL-75 to bacitracin and oxidative stress can be regulated by a common transcription factor activating in response to various environmental stresses.

6.
Toxins (Basel) ; 8(11)2016 10 28.
Article in English | MEDLINE | ID: mdl-27801823

ABSTRACT

Aflatoxins and melanins are the products of a polyketide biosynthesis. In this study, the search of potential inhibitors of the aflatoxin B1 (AFB1) biosynthesis was performed among compounds blocking the pigmentation in fungi. Four compounds-three natural (thymol, 3-hydroxybenzaldehyde, compactin) and one synthetic (fluconazole)-were examined for their ability to block the pigmentation and AFB1 production in Aspergillus flavus. All compounds inhibited the mycelium pigmentation of a fungus growing on solid medium. At the same time, thymol, fluconazole, and 3-hydroxybenzaldehyde stimulated AFB1 accumulation in culture broth of A. flavus under submerged fermentation, whereas the addition of 2.5 µg/mL of compactin resulted in a 50× reduction in AFB1 production. Moreover, compactin also suppressed the sporulation of A. flavus on solid medium. In vivo treatment of corn and wheat grain with compactin (50 µg/g of grain) reduced the level of AFB1 accumulation 14 and 15 times, respectively. Further prospects of the compactin study as potential AFB1 inhibitor are discussed.


Subject(s)
Aflatoxin B1/biosynthesis , Aspergillus flavus/metabolism , Lovastatin/analogs & derivatives , Melanins/biosynthesis , Pigmentation/drug effects , Aflatoxin B1/analysis , Antifungal Agents/pharmacology , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Benzaldehydes/pharmacology , Fluconazole/pharmacology , Lovastatin/pharmacology , Mycelium/drug effects , Mycelium/growth & development , Mycelium/metabolism , Thymol/pharmacology , Triticum/chemistry , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...