Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Med Eng Phys ; 48: 49-54, 2017 10.
Article in English | MEDLINE | ID: mdl-28838798

ABSTRACT

Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays.


Subject(s)
Erythrocytes , Lab-On-A-Chip Devices , Pressure , Humans , Hydrodynamics , Suspensions
3.
Biomicrofluidics ; 11: 014103, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-28090238

ABSTRACT

The pulmonary capillary networks (PCNs) embody organ-specific microvasculatures, where blood vessels form dense meshes that maximize the surface area available for gas exchange in the lungs. With characteristic capillary lengths and diameters similar to the size of red blood cells (RBCs), seminal descriptions coined the term "sheet flow" nearly half a century ago to differentiate PCNs from the usual notion of Poiseuille flow in long straight tubes. Here, we revisit in true-scale experiments the original "sheet flow" model and devise for the first time biomimetic microfluidic platforms of organ-specific PCN structures perfused with RBC suspensions at near-physiological hematocrit levels. By implementing RBC tracking velocimetry, our measurements reveal a wide range of heterogonous RBC pathways that coexist synchronously within the PCN; a phenomenon that persists across the broad range of pressure drops and capillary segment sizes investigated. Interestingly, in spite of the intrinsic complexity of the PCN structure and the heterogeneity in RBC dynamics observed at the microscale, the macroscale bulk flow rate versus pressure drop relationship retains its linearity, where the hydrodynamic resistance of the PCN is to a first order captured by the characteristic capillary segment size. To the best of our knowledge, our in vitro efforts constitute a first, yet significant, step in exploring systematically the transport dynamics of blood in morphologically inspired capillary networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...