Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Neurol ; 531(14): 1350-1380, 2023 10.
Article in English | MEDLINE | ID: mdl-37424289

ABSTRACT

In most animals, multiple external and internal signals are integrated by the brain, transformed and, finally, transmitted as commands to motor centers. In insects, the central complex is a motor control center in the brain, involved in decision-making and goal-directed navigation. In desert locusts, it encodes celestial cues in a compass-like fashion indicating a role in sky-compass navigation. While several descending brain neurons (DBNs) including two neurons transmitting sky compass signals have been identified in the locust, a complete analysis of DBNs and their relationship to the central complex is still lacking. As a basis for further studies, we used Neurobiotin tracer injections into a neck connective to map the organization of DBNs in the brain. Cell counts revealed a maximum of 324 bilateral pairs of DBNs with somata distributed in 14 ipsilateral and nine contralateral groups. These neurons invaded most brain neuropils, especially the posterior slope, posterior and ventro-lateral protocerebrum, the antennal mechanosensory and motor center, but less densely the lateral accessory lobes that are targeted by central-complex outputs. No arborizations were found in the central complex and only few processes in the mushroom body, antennal lobe, lobula, medulla, and superior protocerebrum. Double label experiments provide evidence for the presence of GABA, dopamine, tyramine, but not serotonin, in small sets of DBNs. The data show that some DBNs may be targeted directly by central-complex outputs, but many others are likely only indirectly influenced by central-complex networks, in addition to input from multiple other brain areas.


Subject(s)
Brain , Grasshoppers , Animals , Brain/physiology , Neurons/physiology , Neuropil , Tyramine , Grasshoppers/physiology
2.
Front Cell Neurosci ; 9: 515, 2015.
Article in English | MEDLINE | ID: mdl-26834563

ABSTRACT

As odor concentration increases, primary olfactory network representations expand in spatial distribution, temporal complexity and duration. However, the direct relationship between concentration dependent odor representations and the psychophysical thresholds of detection and discrimination is poorly understood. This relationship is absolutely critical as thresholds signify transition points whereby representations become meaningful to the organism. Here, we matched stimulus protocols for psychophysical assays and intracellular recordings of antennal lobe (AL) projection neurons (PNs) in the moth Manduca sexta to directly compare psychophysical thresholds and the output representations they elicit. We first behaviorally identified odor detection and discrimination thresholds across an odor dilution series for a panel of structurally similar odors. We then characterized spatiotemporal spiking patterns across a population of individually filled and identified AL PNs in response to those odors at concentrations below, at, and above identified thresholds. Using spatial and spatiotemporal based analyses we observed that each stimulus produced unique representations, even at sub-threshold concentrations. Mean response latency did not decrease and the percent glomerular activation did not increase with concentration until undiluted odor. Furthermore, correlations between spatial patterns for odor decreased, but only significantly with undiluted odor. Using time-integrated Euclidean distance (ED) measures, we determined that added spatiotemporal information was present at the discrimination but not detection threshold. This added information was evidenced by an increase in integrated distance between the sub-detection and discrimination threshold concentrations (of the same odor) that was not present in comparison of the sub-detection and detection threshold. After consideration of delays for information to reach the AL we find that it takes ~120-140 ms for the AL to output identity information. Overall, these results demonstrate that as odor concentration increases, added information about odor identity is embedded in the spatiotemporal representation at the discrimination threshold.

3.
Front Neuroeng ; 4: 12, 2011.
Article in English | MEDLINE | ID: mdl-22046161

ABSTRACT

The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike-LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25-55 Hz; odor-driven = 55-85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABA(A) receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model.

4.
Front Cell Neurosci ; 4: 1, 2010.
Article in English | MEDLINE | ID: mdl-20407584

ABSTRACT

Each down stroke of an insect's wings accelerates axial airflow over the antennae. Modeling studies suggest that this can greatly enhance penetration of air and air-born odorants through the antennal sensilla thereby periodically increasing odorant-receptor interactions. Do these periodic changes result in entrainment of neural responses in the antenna and antennal lobe (AL)? Does this entrainment affect olfactory acuity? To address these questions, we monitored antennal and AL responses in the moth Manduca sexta while odorants were pulsed at frequencies from 10-72 Hz, encompassing the natural wingbeat frequency. Power spectral density (PSD) analysis was used to identify entrainment of neural activity. Statistical analysis of PSDs indicates that the antennal nerve tracked pulsed odor up to 30 Hz. Furthermore, at least 50% of AL local field potentials (LFPs) and between 7-25% of unitary spiking responses also tracked pulsed odor up to 30 Hz in a frequency-locked manner. Application of bicuculline (200 muM) abolished pulse tracking in both LFP and unitary responses suggesting that GABA(A) receptor activation is necessary for pulse tracking within the AL. Finally, psychophysical measures of odor detection establish that detection thresholds are lowered when odor is pulsed at 20 Hz. These results suggest that AL networks can respond to the oscillatory dynamics of stimuli such as those imposed by the wing beat in a manner analogous to mammalian sniffing.

5.
J Neurosci Methods ; 180(2): 208-23, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19464513

ABSTRACT

A central problem facing studies of neural encoding in sensory systems is how to accurately quantify the extent of spatial and temporal responses. In this study, we take advantage of the relatively simple and stereotypic neural architecture found in invertebrates. We combine standard electrophysiological techniques, recently developed population analysis techniques, and novel anatomical methods to form an innovative 4-dimensional view of odor output representations in the antennal lobe of the moth Manduca sexta. This novel approach allows quantification of olfactory responses of characterized neurons with spike time resolution. Additionally, arbitrary integration windows can be used for comparisons with other methods such as imaging. By assigning statistical significance to changes in neuronal firing, this method can visualize activity across the entire antennal lobe. The resulting 4-dimensional representation of antennal lobe output complements imaging and multi-unit experiments yet provides a more comprehensive and accurate view of glomerular activation patterns in spike time resolution.


Subject(s)
Brain Mapping/methods , Brain/physiology , Electrophysiology/methods , Image Processing, Computer-Assisted/methods , Neurons/physiology , Staining and Labeling/methods , Animals , Brain/cytology , Brain Mapping/instrumentation , Data Interpretation, Statistical , Electrophysiology/instrumentation , Fluorescent Dyes , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/physiology , Male , Manduca , Neurons/cytology , Neurophysiology/instrumentation , Neurophysiology/methods , Olfactory Pathways/cytology , Olfactory Pathways/physiology , Signal Processing, Computer-Assisted , Smell/physiology , Species Specificity
6.
IEEE Trans Biomed Eng ; 53(10): 2084-91, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17019873

ABSTRACT

This paper reports the development and in-vivo testing of a compact multitransducer microsystem intended for neuroethology experiments, including studies of gait dynamics in free-running insects. The system incorporates a combination of custom and off-the-shelf components. Its suite of measurement devices comprises leg-mounted strain gauges, electromyogram (EMG) and extracellular electrodes for the central nervous system, and a two-axis accelerometer. For signal conditioning and selection, the microsystem implements off-the-shelf electronics in a custom chip-on-board configuration. The microsystem measures 16 mm x 19 mm, supports 40 components and 56 I/O leads, and is assembled on a four-layer printed-circuit board. The entire system occupies only 0.65 cm3 and weighs less than 5 g. It has been successfully used to monitor leg-strain and EMG signals on walking cockroaches and for stimulation in the insect central nervous and muscular systems.


Subject(s)
Acceleration , Cockroaches/physiology , Electric Stimulation/instrumentation , Electromyography/instrumentation , Locomotion/physiology , Monitoring, Ambulatory/instrumentation , Transducers , Animals , Equipment Design , Equipment Failure Analysis , Extremities/physiology , Feedback/physiology , Monitoring, Ambulatory/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...