Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559884

ABSTRACT

A set of aromatic copolyimides was obtained by reaction of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and mixtures of the diamines 1,4-bis(4-amino-2-trifluoromethylphenoxy)-2,5-di-tert-butylbenzene (CF3TBAPB) and 3,5-diamino benzoic acid (DABA). These polymers were characterized and compared with the homopolymer derived from 6FDA and CF3TBAPB. All copolyimides showed high molecular weight values and good mechanical properties. The presence of carboxylic groups in these copolymers allowed their chemical crosslinking by reaction with 1,4-butanediol. Glass transition temperatures (Tg) were higher than 260 °C, showing the non-crosslinked copolyimides had the highest Tg values. Degradation temperature of crosslinked copolyimides was lower than their corresponding non-crosslinked ones. Mechanical properties of all polymers were good, and thus, copolyimide (precursor, and crosslinked ones) films could be tested as gas separation membranes. It was observed that CO2 permeability values were around 100 barrer. Finally, the plasticization resistance of the crosslinked material having a large number of carboxylic groups was excellent.

2.
ChemSusChem ; 9(15): 1953-62, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27332951

ABSTRACT

Polyphenylenesulfone (PPSU) and sulfonated polyphenylenesulfone (sPPSU) are widely used for liquid separations in the medical and food industries. However, their potential applications for gas separation have not been studied extensively owing to their low intrinsic gas permeability. We report here for the first time that blending with sPPSU can significantly improve the gas separation performance of highly permeable polymers of intrinsic microporosity (PIMs), specifically PIM-1, because of the strong molecular interactions of the sulfonic acid groups of sPPSU with CO2 and O2 . In addition, a novel co-solvent system has been discovered to overcome the immiscibility of these polymers. The presence of a higher degree of sulfonation in sPPSU results in better gas separation performance of the blend membranes close to or above the Robeson upper bound lines for O2 /N2 , CO2 /N2 and CO2 /CH4 separations. Interestingly, the blend membranes have comparable gas selectivity to sPPSU even though their sPPSU content is only 5-20 wt %. Moreover, they also display improved anti-plasticization properties up to 30 atm (3 MPa) using a binary CO2 /CH4 feed gas. The newly developed PIM-1/sPPSU membranes are potential candidates for air separation, natural gas separation, and CO2 capture.


Subject(s)
Gases/chemistry , Gases/isolation & purification , Polymers/chemistry , Sulfonic Acids/chemistry , Membranes, Artificial , Models, Molecular , Molecular Conformation , Permeability , Porosity , Solvents/chemistry
3.
Environ Sci Technol ; 50(14): 7696-705, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27280490

ABSTRACT

Boron removal is one of the great challenges in modern wastewater treatment, owing to the unique small size and fast diffusion rate of neutral boric acid molecules. As forward osmosis (FO) membranes with a single selective layer are insufficient to reject boron, double-skinned FO membranes with boron rejection up to 83.9% were specially designed for boron permeation studies. The superior boron rejection properties of double-skinned FO membranes were demonstrated by theoretical calculations, and verified by experiments. The double-skinned FO membrane was fabricated using a sulfonated polyphenylenesulfone (sPPSU) polymer as the hydrophilic substrate and polyamide as the selective layer material via interfacial polymerization on top and bottom surfaces. A strong agreement between experimental data and modeling results validates the membrane design and confirms the success of model prediction. The effects of key parameters on boron rejection, such as boron permeability of both selective layers and structure parameter, were also investigated in-depth with the mathematical modeling. This study may provide insights not only for boron removal from wastewater, but also open up the design of next generation FO membranes to eliminate low-rejection molecules in wider applications.


Subject(s)
Boric Acids , Water Purification , Membranes, Artificial , Osmosis , Permeability
4.
Water Res ; 91: 361-70, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26820358

ABSTRACT

A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage. The FO-CF hybrid system exhibits unique advantages of high water flux and recovery rate, well controlled membrane fouling, high efficiency, and minimal environmental impact. Using a lab-made thin-film composite (TFC) FO membrane, an initial water flux (Jw) of 36.0 L m(-2) h(-1) with a dye rejection of 99.9% has been demonstrated by using 2 M NaCl as the draw solution and synthetic textile wastewater containing multiple textile dyes, inorganic salts and organic additives as the feed under the FO mode. The Jw could be maintained at a high value of 12.0 L m(-2) h(-1) even when the recovery rate of the wastewater reaches 90%. Remarkable reverse fouling behavior has also been observed where the Jw of the fouled membrane can be almost fully restored to the initial value by physical flushing without using any chemicals. Due to the great dye concentration in the FO concentrated wastewater stream, the CF process could achieve more than 95% dye removal with a small dosage of coagulants and flocculants at 500-1000 ppm. The newly developed FO-CF hybrid process may open up new exploration of alternative technologies for the effective treatment and reuse of textile effluents.


Subject(s)
Coloring Agents/chemistry , Filtration/methods , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/chemistry , Filtration/instrumentation , Flocculation , Membranes, Artificial , Osmosis , Textile Industry , Waste Disposal, Fluid/instrumentation
5.
Water Res ; 91: 104-14, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26773492

ABSTRACT

In this study, we have explored and compared the effectiveness of using (1) lab-fabricated forward osmosis (FO) membranes under both FO and reverse osmosis (RO) modes and (2) commercially available RO membranes under the RO mode for the removal of organic micro-pollutants. The lab-fabricated FO membranes are thin film composite (TFC) membranes consisting of a polyamide layer and a porous substrate cast from three different materials; namely, Matrimid, polyethersulfone (PESU) and sulfonated polyphenylene sulfone (sPPSU). The results show that the FO mode is superior to the RO mode in the removal of phenol, aniline and nitrobenzene from wastewater. The rejections of all three TFC membranes to all the three organic micro-pollutants under the FO processes are higher than 72% and can be even higher than 90% for aniline when a 1000 ppm aromatic aqueous solution and 1 M NaCl are employed as feeds. These performances outperform the results obtained from themselves and commercially available RO membranes under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost doubled, and the rejection increment can reach up to 17%. Moreover, it was observed that annealing as a post-treatment would help compact the membrane selective layer and further enhance the separating efficiency. The obtained organic micro-pollutant rejections and water fluxes under various feasible operating conditions indicate that the FO process has potential to be a viable treatment for wastewater containing organic micro-pollutants.


Subject(s)
Aniline Compounds/chemistry , Filtration/methods , Nitrobenzenes/chemistry , Osmosis , Phenol/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Membranes, Artificial
6.
Membranes (Basel) ; 3(4): 331-53, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24957061

ABSTRACT

Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model.

7.
Dalton Trans ; 41(46): 14003-27, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23070078

ABSTRACT

Mixed-matrix membranes (MMMs) with metal-organic frameworks (MOFs) as additives (fillers) exhibit enhanced gas permeabilities and possibly also selectivities when compared to the pure polymer. Polyimides (Matrimid®) and polysulfones are popular polymer matrices for MOF fillers. Presently investigated MOFs for MMMs include [Cu(SiF(6))(4,4'-BIPY)(2)], [Cu(3)(BTC)(2)(H(2)O)(3)] (HKUST-1, Cu-BTC), [Cu(BDC)(DMF)], [Zn(4)O(BDC)(3)] (MOF-5), [Zn(2-methylimidazolate)(2)] (ZIF-8), [Zn(purinate)(2)] (ZIF-20), [Zn(2-carboxyaldehyde imidazolate)(2)] (ZIF-90), Mn(HCOO)(2), [Al(BDC)(µ-OH)] (MIL-53(Al)), [Al(NH(2)-BDC)(µ-OH)] (NH(2)-MIL-53(Al)) and [Cr(3)O(BDC)(3)(F,OH)(H(2)O)(2)] (MIL-101) (4,4'-BIPY = 4,4'-bipyridine, BTC = benzene-1,3,5-tricarboxylate, BDC = benzene-1,4-dicarboxylate, terephthalate). MOF particle adhesion to polyimide and polysulfone organic polymers does not represent a problem. MOF-polymer MMMs are investigated for the permeability of the single gases H(2), N(2), O(2), CH(4), CO(2) and of the gas mixtures O(2)/N(2), H(2)/CH(4), CO(2)/CH(4), H(2)/CO(2), CH(4)/N(2) and CO(2)/N(2) (preferentially permeating gas named first). Permeability increases can be traced to the MOF porosity. Since the porosity of MOFs can be tuned very precisely, which is not possible with polymeric material, MMMs offer the opportunity of significantly increasing the selectivity compared to the pure polymeric matrix. Additionally in most of the cases the permeability is increased for MMM membranes compared to the pure polymer. Addition of MOFs to polymers in MMMs easily yields performances similar to the best polymer membranes and gives higher selectivities than those reported to date for any pure MOF membrane for the same gas separation. MOF-polymer MMMs allow for easier synthesis and handability compared to pure MOF membranes.

8.
Beilstein J Org Chem ; 8: 776-86, 2012.
Article in English | MEDLINE | ID: mdl-23015826

ABSTRACT

Soluble functional (co)polyimides are of great interest in the area of separation processes or optical applications, due to their excellent mechanical-, thermal- and optical properties, their superior processability and the ability to adapt their properties to a wide range of special applications. Therefore, two series of novel (co)polyimides containing fluorinated sulfur- and carboxylic acid groups consisting of 4,4'-(hexafluoroisopropylidene)di(phthalic anhydride) (6FDA), 3,5-diaminobenzoic acid (DABA), 4,4'-diaminodiphenylsulfide (4,4'-SDA) and 3,3'-diaminodiphenylsulfone (3,3'-DDS) were synthesized in a two-step polycondensation reaction. The synthesized copolymers were characterized by using NMR, FTIR, GPC, and DSC. Furthermore, with regard to processing and potential applications, the thermal stability, solubility in common organic solvents, moisture uptake, and transparency were investigated. Compared to commercially available transparent polymers, i.e., polymethylmethacrylate and cycloolefin polymers, the sulfur (co)polyimides containing carboxyl groups showed much higher glass-transition temperatures, comparably low moisture uptake and high transmission at the sodium D-line. Furthermore, good solubility in commonly used organic solvents makes them very attractive as high-performance coating materials.

9.
Phys Chem Chem Phys ; 14(13): 4538-47, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22366816

ABSTRACT

Copolyimide membranes are established materials for the separation of gaseous and liquid mixtures. Cross-linking of the polymer strands improves the physical and chemical stability. The photo-cross-linking of a 6FDA-ODA/6FDA-DABA 4 : 1 copolyimide membrane containing maleimide side groups as linker was investigated by FTIR spectroscopy. IR absorption spectra of the copolyimide backbone, 3-hydroxypropyldimethyl maleimide and the copolyimide functionalized with 3-hydroxypropyldimethyl maleimide were measured before and after different irradiation times and compared to each other. For band assignment a normal mode analysis was performed. The backbone of the polymer and the maleimide linker can be well distinguished due to their different spectral band positions. Only the films containing a maleimide moiety perform a photoreaction, the polymer backbone does not interfere. Based on the difference spectra and the results of the DFT calculations it was shown that the trans- and the cis-cycloadduct as well as the previously suggested 2-2'-adduct without a cyclobutane ring are formed upon UV irradiation. Evidence for an oxetane-like photoproduct was not found. Different time constants for the increase of the product bands were observed. The cycloadduct accumulates with a shorter time constant (τ = 2 to 5 min) than the 2-2'-adduct (τ = 75 min). The yield of the photo-cross-linking reaction was determined by spectral deconvolution and kinetic fitting of several marker bands. For the copolyimide synthesized in this work, a maximum value of 6% was reached. The stiffness of the copolyimide backbone inhibits further photo-cross-linking.


Subject(s)
Cross-Linking Reagents/chemistry , Maleimides/chemistry , Membranes, Artificial , Resins, Synthetic/chemistry , Dimerization , Molecular Structure , Photochemical Processes , Quantum Theory
10.
Chem Commun (Camb) ; 48(15): 2140-2, 2012 Feb 18.
Article in English | MEDLINE | ID: mdl-22245981

ABSTRACT

Water-stable MIL-101 microcrystals adhere well to polysulfone (PSF) and yield a very robust mixed-matrix MIL-101-PSF membrane for the O(2)/N(2) separation with a selectivity of 5-6 and an unsurpassed O(2) permeability increase by a factor of four to above 6 barrer for MIL-101 loadings of 24%.

11.
Membranes (Basel) ; 2(4): 727-63, 2012 Oct 22.
Article in English | MEDLINE | ID: mdl-24958427

ABSTRACT

Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs). Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs) with MOFs as additives (fillers) have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first). The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes.

12.
Beilstein J Org Chem ; 6: 789-800, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20978620

ABSTRACT

Functionalized copolyimides continue to attract much attention as membrane materials because they can fulfill the demands for industrial applications. Thus not only good separation characteristics but also high temperature stability and chemical resistance are required. Furthermore, it is very important that membrane materials are resistant to plasticization since it has been shown that this phenomenon leads to a significant increase in permeability with a dramatic loss in selectivity. Plasticization effects occur with most polymer membranes at high CO2 concentrations and pressures, respectively. Plasticization effects are also observed with higher hydrocarbons such as propylene, propane, aromatics or sulfur containing aromatics. Unfortunately, these components are present in mixtures of high commercial relevance and can be separated economically by single membrane units or hybrid processes where conventional separation units are combined with membrane-based processes. In this paper the advantages of carboxy group containing 6FDA (4,4'-hexafluoroisopropylidene diphthalic anhydride) -copolyimides are discussed based on the experimental results for non cross-linked, ionically and covalently cross-linked membrane materials with respect to the separation of olefins/paraffins, e.g. propylene/propane, aromatic/aliphatic separation e.g. benzene/cyclohexane as well as high pressure gas separations, e.g. CO2/CH4 mixtures. In addition, opportunities for implementing the membrane units in conventional separation processes are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...