Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Appl Lab Med ; 9(4): 696-703, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38573939

ABSTRACT

BACKGROUND: Point-of-care testing in the emergency department decreases wait times and supports evidence-based patient care. However, hurdles to successful implementation include management of interdisciplinary work flows and establishment of an effective quality control program. As COVID-19 testing is now integrated into screening protocols in emergency and urgent care settings, hospital systems must maintain flexible and adaptable respiratory virus testing to adapt to regional trends in transmission. In response to this challenge, our hospital system established a point-of-care respiratory virus laboratory within the emergency department to test for COVID, influenza A/B, and respiratory syncytial virus (RSV). However, maintaining regulatory compliance and standardized protocols within such a dynamic environment became challenging. METHODS: We launched a quality improvement initiative to support improved performance and efficiency in the point-of-care laboratory with a focus on regulatory benchmarks. Following a period of observation and discussion with key stakeholders in the emergency department and pathology, an audit tool was developed and to be deployed in collaboration with ED nursing. Utilizing the new tool, ED nursing would perform audits in parallel to audits performed by point-of-care staff. RESULTS: Prior to the intervention, the average audit score was approximately 55%; 6 months following the intervention, audit scores have remained stable at approximately 80%, representing a significant improvement in regulatory compliance. CONCLUSIONS: Creation of a regulatory tool enabled real-time cross-departmental monitoring of regulatory compliance. These findings underscore the importance of developing transparent interdisciplinary work flows and effective communication to improve patient care.


Subject(s)
COVID-19 , Emergency Service, Hospital , Point-of-Care Testing , SARS-CoV-2 , Humans , Point-of-Care Testing/standards , COVID-19/diagnosis , Quality Improvement , Point-of-Care Systems , Respiratory Syncytial Virus Infections/diagnosis , COVID-19 Testing/methods
3.
Nat Commun ; 11(1): 4625, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934225

ABSTRACT

A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway-Ribosome-associated Quality Control (RQC)-by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF's role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration.


Subject(s)
Neuromuscular Diseases/metabolism , Ribosomes/metabolism , Amino Acid Sequence , Animals , Female , Humans , Male , Mice , Mice, Knockout , Mutation , Neuromuscular Diseases/genetics , Neuromuscular Diseases/pathology , Proteolysis , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment
5.
Acta Neuropathol ; 136(3): 405-423, 2018 09.
Article in English | MEDLINE | ID: mdl-29881994

ABSTRACT

Sporadic amyotrophic lateral sclerosis (sALS) is the most common form of ALS, however, the molecular mechanisms underlying cellular damage and motor neuron degeneration remain elusive. To identify molecular signatures of sALS we performed genome-wide expression profiling in laser capture microdissection-enriched surviving motor neurons (MNs) from lumbar spinal cords of sALS patients with rostral onset and caudal progression. After correcting for immunological background, we discover a highly specific gene expression signature for sALS that is associated with phosphorylated TDP-43 (pTDP-43) pathology. Transcriptome-pathology correlation identified casein kinase 1ε (CSNK1E) mRNA as tightly correlated to levels of pTDP-43 in sALS patients. Enhanced crosslinking and immunoprecipitation in human sALS patient- and healthy control-derived frontal cortex, revealed that TDP-43 binds directly to and regulates the expression of CSNK1E mRNA. Additionally, we were able to show that pTDP-43 itself binds RNA. CK1E, the protein product of CSNK1E, in turn interacts with TDP-43 and promotes cytoplasmic accumulation of pTDP-43 in human stem-cell-derived MNs. Pathological TDP-43 phosphorylation is therefore, reciprocally regulated by CK1E activity and TDP-43 RNA binding. Our framework of transcriptome-pathology correlations identifies candidate genes with relevance to novel mechanisms of neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Casein Kinase I/metabolism , DNA-Binding Proteins/metabolism , Motor Neurons/metabolism , Spinal Cord/metabolism , Transcriptome , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/pathology , Female , Humans , Male , Middle Aged , Motor Neurons/pathology , Phosphorylation , Spinal Cord/pathology
6.
Acta Neuropathol ; 135(3): 459-474, 2018 03.
Article in English | MEDLINE | ID: mdl-29196813

ABSTRACT

Hexanucleotide repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (C9 ALS). The main hypothesized pathogenic mechanisms are C9orf72 haploinsufficiency and/or toxicity from one or more of bi-directionally transcribed repeat RNAs and their dipeptide repeat proteins (DPRs) poly-GP, poly-GA, poly-GR, poly-PR and poly-PA. Recently, nuclear import and/or export defects especially caused by arginine-containing poly-GR or poly-PR have been proposed as significant contributors to pathogenesis based on disease models. We quantitatively studied and compared DPRs, nuclear pore proteins and C9orf72 protein in clinically related and clinically unrelated regions of the central nervous system, and compared them to phosphorylated TDP-43 (pTDP-43), the hallmark protein of ALS. Of the five DPRs, only poly-GR was significantly abundant in clinically related areas compared to unrelated areas (p < 0.001), and formed dendritic-like aggregates in the motor cortex that co-localized with pTDP-43 (p < 0.0001). While most poly-GR dendritic inclusions were pTDP-43 positive, only 4% of pTDP-43 dendritic inclusions were poly-GR positive. Staining for arginine-containing poly-GR and poly-PR in nuclei of neurons produced signals that were not specific to C9 ALS. We could not detect significant differences of nuclear markers RanGap, Lamin B1, and Importin ß1 in C9 ALS, although we observed subtle nuclear changes in ALS, both C9 and non-C9, compared to control. The C9orf72 protein itself was diffusely expressed in cytoplasm of large neurons and glia, and nearly 50% reduced, in both clinically related frontal cortex and unrelated occipital cortex, but not in cerebellum. In summary, sense-encoded poly-GR DPR was unique, and localized to dendrites and pTDP43 in motor regions of C9 ALS CNS. This is consistent with new emerging ideas about TDP-43 functions in dendrites.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Dipeptides/metabolism , Spinal Cord/metabolism , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Brain/pathology , C9orf72 Protein/genetics , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , DNA Repeat Expansion , Dendrites/pathology , Female , Humans , Male , Middle Aged , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neuroglia/metabolism , Neuroglia/pathology , Spinal Cord/pathology
7.
Acta Neuropathol ; 134(1): 97-111, 2017 07.
Article in English | MEDLINE | ID: mdl-28247063

ABSTRACT

A common feature of inherited and sporadic ALS is accumulation of abnormal proteinaceous inclusions in motor neurons and glia. SOD1 is the major protein component accumulating in patients with SOD1 mutations, as well as in mutant SOD1 mouse models. ALS-linked mutations of SOD1 have been shown to increase its propensity to misfold and/or aggregate. Antibodies specific for monomeric or misfolded SOD1 have detected misfolded SOD1 accumulating predominantly in spinal cord motor neurons of ALS patients with SOD1 mutations. We now use seven different conformationally sensitive antibodies to misfolded human SOD1 (including novel high affinity antibodies currently in pre-clinical development) coupled with immunohistochemistry, immunofluorescence and immunoprecipitation to test for the presence of misfolded SOD1 in high quality human autopsy samples. Whereas misfolded SOD1 is readily detectable in samples from patients with SOD1 mutations, it is below detection limits for all of our measures in spinal cord and cortex tissues from patients with sporadic or non-SOD1 inherited ALS. The absence of evidence for accumulated misfolded SOD1 supports a conclusion that SOD1 misfolding is not a primary component of sporadic ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Superoxide Dismutase-1/metabolism , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Disease Models, Animal , Female , Humans , Immunohistochemistry , Immunoprecipitation , Male , Mice, Transgenic , Middle Aged , Protein Folding , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase-1/genetics , Young Adult
8.
Neuron ; 90(3): 535-50, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27112497

ABSTRACT

Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Frontotemporal Dementia/drug therapy , Guanine Nucleotide Exchange Factors/genetics , Oligonucleotides, Antisense/pharmacology , RNA/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , C9orf72 Protein , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Mice, Transgenic , Neurons/metabolism , Oligonucleotides, Antisense/adverse effects , Oligonucleotides, Antisense/genetics
9.
Neurol Clin ; 33(4): 855-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26515626

ABSTRACT

The neuropathologic molecular signature common to almost all sporadic amyotrophic lateral sclerosis (ALS) and most familial ALS is TDP-43 immunoreactive neuronal cytoplasmic inclusions. The neuropathologic and molecular neuropathologic features of ALS variants, primarily lateral sclerosis and progressive muscular atrophy, are less certain but also seem to share the primary features of ALS. Genetic causes, including mutations in SOD1, TDP-43, FUS, and C9orf72, all have distinctive molecular neuropathologic signatures. Neuropathology will continue to play an increasingly key role in solving the puzzle of ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins/genetics , Genetic Variation/genetics , Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , C9orf72 Protein , Humans
10.
Genetics ; 193(2): 421-30, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23150604

ABSTRACT

Site-specific recombinases (SSRs) are valuable tools for manipulating genomes. In Drosophila, thousands of transgenic insertions carrying SSR recognition sites have been distributed throughout the genome by several large-scale projects. Here we describe a method with the potential to use these insertions to make custom alterations to the Drosophila genome in vivo. Specifically, by employing recombineering techniques and a dual recombinase-mediated cassette exchange strategy based on the phiC31 integrase and FLP recombinase, we show that a large genomic segment that lies between two SSR recognition-site insertions can be "captured" as a target cassette and exchanged for a sequence that was engineered in bacterial cells. We demonstrate this approach by targeting a 50-kb segment spanning the tsh gene, replacing the existing segment with corresponding recombineered sequences through simple and efficient manipulations. Given the high density of SSR recognition-site insertions in Drosophila, our method affords a straightforward and highly efficient approach to explore gene function in situ for a substantial portion of the Drosophila genome.


Subject(s)
Drosophila melanogaster/genetics , Gene Targeting , Genome, Insect , Mutagenesis, Insertional , Animals , DNA Nucleotidyltransferases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/enzymology , Integrases/genetics , Mutagenesis, Site-Directed , Repressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...