Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Med ; 10(21): 7692-7711, 2021 11.
Article in English | MEDLINE | ID: mdl-34581028

ABSTRACT

BACKGROUND: Cancer resequencing studies have revealed epigenetic enzymes as common targets for recurrent mutations. The monomethyltransferase MLL3 is among the most recurrently mutated enzymes in ER+ breast cancer. The H3K4me1 marks created by MLL3 can define enhancers. In ER+ breast cancer, ERα genome-binding sites are primarily distal enhancers. Thus, we hypothesize that mutation of MLL3 will alter the genomic binding and transcriptional regulatory activity of ERα. METHODS: We investigated the genomic consequences of knocking down MLL3 in an MLL3/PIK3CA WT ER+ breast cancer cell line. RESULTS: Loss of MLL3 led to a large loss of H3K4me1 across the genome, and a shift in genomic location of ERα-binding sites, which was accompanied by a re-organization of the breast cancer transcriptome. Gene set enrichment analyses of ERα-binding sites in MLL3 KD identified endocrine therapy resistance terms, and we showed that MLL3 KD cells are resistant to tamoxifen and fulvestrant. Many differentially expressed genes are controlled by the small collection of new locations of H3K4me1 deposition and ERα binding, suggesting that loss of functional MLL3 leads to new transcriptional regulation of essential genes. Motif analysis of RNA-seq and ChIP-seq data highlighted SP1 as a critical transcription factor in the MLL3 KD cells. Differentially expressed genes that display a loss of ERα binding upon MLL3 KD also harbor increased SP1 binding. CONCLUSIONS: Our data show that a decrease in functional MLL3 leads to endocrine therapy resistance. This highlights the importance of genotyping patient tumor samples for MLL3 mutation upon initial resection, prior to deciding upon treatment plans.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Mutation , Binding Sites , Breast Neoplasms/metabolism , Cell Line, Tumor , Estrogen Receptor alpha/metabolism , Female , Fulvestrant/therapeutic use , Humans , Tamoxifen/therapeutic use
2.
Cell Rep ; 32(3): 107931, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697984

ABSTRACT

In response to estrogens, estrogen receptor alpha (ERα), a critical regulator of homeostasis, is degraded through the 26S proteasome. However, despite the continued presence of estrogen before menopause, ERα protein levels are maintained. We discovered that ERK1/2-RSK2 activity oscillates during the estrous cycle. In response to high estrogen levels, ERK1/2 is activated and phosphorylates ERα to drive ERα degradation and estrogen-responsive gene expression. Reduction of estrogen levels results in ERK1/2 deactivation. RSK2 maintains redox homeostasis, which prevents sustained ERK1/2 activation. In juveniles, ERK1/2-RSK2 activity is not required. Mammary gland regeneration demonstrates that ERK1/2-RSK2 regulation of ERα is intrinsic to the epithelium. Reduced RSK2 and enrichment in an estrogen-regulated gene signature occur in individuals taking oral contraceptives. RSK2 loss enhances DNA damage, which may account for the elevated breast cancer risk with the use of exogenous estrogens. These findings implicate RSK2 as a critical component for the preservation of estrogen homeostasis.


Subject(s)
Aging/metabolism , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Homeostasis , Proteolysis , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Animals , Breast/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Epithelium/metabolism , Estrous Cycle , Female , Humans , Mammary Glands, Animal/metabolism , Mice, Knockout , Oxidative Stress , Phosphorylation , Phosphoserine/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Biosynthesis , Signal Transduction , Transcription, Genetic , Uterus/metabolism
4.
Clin Cancer Res ; 23(20): 6138-6150, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28751448

ABSTRACT

Purpose:FGFR1 amplification occurs in approximately 15% of estrogen receptor-positive (ER+) human breast cancers. We investigated mechanisms by which FGFR1 amplification confers antiestrogen resistance to ER+ breast cancer.Experimental Design: ER+ tumors from patients treated with letrozole before surgery were subjected to Ki67 IHC, FGFR1 FISH, and RNA sequencing (RNA-seq). ER+/FGFR1-amplified breast cancer cells, and patient-derived xenografts (PDX) were treated with FGFR1 siRNA or the FGFR tyrosine kinase inhibitor lucitanib. Endpoints were cell/xenograft growth, FGFR1/ERα association by coimmunoprecipitation and proximity ligation, ER genomic activity by ChIP sequencing, and gene expression by RT-PCR.Results: ER+/FGFR1-amplified tumors in patients treated with letrozole maintained cell proliferation (Ki67). Estrogen deprivation increased total and nuclear FGFR1 and FGF ligands expression in ER+/FGFR1-amplified primary tumors and breast cancer cells. In estrogen-free conditions, FGFR1 associated with ERα in tumor cell nuclei and regulated the transcription of ER-dependent genes. This association was inhibited by a kinase-dead FGFR1 mutant and by treatment with lucitanib. ChIP-seq analysis of estrogen-deprived ER+/FGFR1-amplified cells showed binding of FGFR1 and ERα to DNA. Treatment with fulvestrant and/or lucitanib reduced FGFR1 and ERα binding to DNA. RNA-seq data from FGFR1-amplified patients' tumors treated with letrozole showed enrichment of estrogen response and E2F target genes. Finally, growth of ER+/FGFR1-amplified cells and PDXs was more potently inhibited by fulvestrant and lucitanib combined than each drug alone.Conclusions: These data suggest the ERα pathway remains active in estrogen-deprived ER+/FGFR1-amplified breast cancers. Therefore, these tumors are endocrine resistant and should be candidates for treatment with combinations of ER and FGFR antagonists. Clin Cancer Res; 23(20); 6138-50. ©2017 AACR.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Transcription, Genetic , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor alpha/antagonists & inhibitors , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Mice , Molecular Targeted Therapy , Neoplasm Staging , Protein Kinase Inhibitors/pharmacology , Protein Transport , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction/drug effects
5.
Nat Genet ; 49(3): 367-376, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28092686

ABSTRACT

During the progression of pancreatic ductal adenocarcinoma (PDAC), heterogeneous subclonal populations emerge that drive primary tumor growth, regional spread, distant metastasis, and patient death. However, the genetics of metastases largely reflects that of the primary tumor in untreated patients, and PDAC driver mutations are shared by all subclones. This raises the possibility that an epigenetic process might operate during metastasis. Here we report large-scale reprogramming of chromatin modifications during the natural evolution of distant metastasis. Changes were targeted to thousands of large chromatin domains across the genome that collectively specified malignant traits, including euchromatin and large organized chromatin histone H3 lysine 9 (H3K9)-modified (LOCK) heterochromatin. Remarkably, distant metastases co-evolved a dependence on the oxidative branch of the pentose phosphate pathway (oxPPP), and oxPPP inhibition selectively reversed reprogrammed chromatin, malignant gene expression programs, and tumorigenesis. These findings suggest a model whereby linked metabolic-epigenetic programs are selected for enhanced tumorigenic fitness during the evolution of distant metastasis.


Subject(s)
Epigenesis, Genetic/genetics , Glucose/metabolism , Neoplasm Metastasis/genetics , Pancreatic Neoplasms/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Chromatin/genetics , Epigenomics/methods , Gene Expression/genetics , Heterochromatin/genetics , Histones/genetics , Humans , Pancreatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...